Skip to main content

Abstract

This chapter describes all the machine learning methods that are employed in this book to obtain results for different applications of computer vision and string processing . The chapter gives an overview of the main concepts of learning based on similarity. Specific machine learning methods that are based on these concepts are then presented. First, nearest neighbor models are discussed. A nonstandard learning formulation based on the notions of similarity and nearest neighbors , known as local learning , is then presented. An overview of kernel methods is also given, since the state-of-the-art methods consistently used in the supervised learning tasks presented throughout this book are kernel methods . This chapter ends with a discussion about cluster analysis . Clustering techniques are used throughout this book in various contexts, from building vocabularies of visual words to phylogenetic analysis .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achtert E, Bohm C, Kriegel HP, Kroger P, Muller-Gorman I, Zimek A (2006) Detection and visualization of subspace cluster hierarchies. In: Proceedings of DASFAA, pp 152–163

    Google Scholar 

  • Achtert E, Bohm C, Kriegel HP, Kroger P, Muller-Gorman I, Zimek A (2007) Finding hierarchies of subspace clusters. In: Proceedings of PKDD, pp 446–453

    Google Scholar 

  • Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. SIGMOD Rec 27(2):94–105

    Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  • Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522

    Article  Google Scholar 

  • Bohm C, Kailing K, Kroger P, Zimek A (2004) Computing clusters of correlation connected objects. In: Proceedings of the 2004 ACM SIGMOD, pp 455–466

    Google Scholar 

  • Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications. Springer, Berlin

    Google Scholar 

  • Bottou L, Vapnik V (1992) Local learning algorithms. Neural Comput 4:888–900

    Google Scholar 

  • Cazzanti L, Gupta MR, Koppal AJ (2008) Generative models for similarity-based classification. Pattern Recognit 41(7):2289–2297

    Google Scholar 

  • Cazzanti L, Gupta MR (2007) Local similarity discriminant analysis. In: Proceedings of ICML, pp 137–144

    Google Scholar 

  • Chen Y, Garcia EK, Gupta MR, Rahimi A, Luca C (2009) Similarity-based classification: concepts and algorithms. J Mach Learn Res 10:747–776

    Google Scholar 

  • Chimani M, Woste M, Bocker S (2011) A closer look at the closest string and closest substring problem. In: Proceedings of ALENEX, pp 13–24

    Google Scholar 

  • Cortes C, Mohri M, Rostamizadeh A (2013) Multi-class classification with maximum margin multiple kernel. J Mach Learn Res 28(3):46–54

    Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  MATH  Google Scholar 

  • Cristianini N, Shawe-Taylor J, Elisseeff A, Kandola JS (2001) On kernel-target alignment. In: Proceedings of NIPS, pp 367–373

    Google Scholar 

  • Dasarathy BV (1991) Nearest neighbor (NN) norms: pattern classification techniques. IEEE Computer Society Press, Los Alamitos

    Google Scholar 

  • Devroye L, Györfi L, Lugosi GA (1996) Probabilistic theory of pattern recognition. Springer, New York

    Google Scholar 

  • Dinu LP, Ionescu RT (2012a) Clustering based on rank distance with applications on DNA. In: Proceedings of ICONIP, vol 7667, pp 722–729

    Google Scholar 

  • Dinu LP, Ionescu RT (2012b) An efficient rank based approach for closest string and closest substring. PLoS ONE 7(6):e37576

    Google Scholar 

  • Faragó A, Linder T, Lugosi G (1993) Fast nearest-neighbor search in dissimilarity spaces. IEEE Trans Pattern Anal Mach Intell 15(9):957–962

    Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7(7):179–188

    Article  Google Scholar 

  • Fix E, Hodges J (1951) Discriminatory analysis, non-parametric discrimination: consistency properties. Technical report, USAF School of Aviation and Medicine, Randolph Field, TX, 1951. Technical Report 4

    Google Scholar 

  • Gonen M, Alpaydin E (2011) Multiple kernel learning algorithms. J Mach Learn Res 12:2211–2268

    Google Scholar 

  • Graepel T, Herbrich R, Bollmann-Sdorra P, Obermayer K (1998) Classification on pairwise proximity data. In: Proceedings of NIPS, pp 438–444

    Google Scholar 

  • Graepel T, Herbrich R, Scholkopf B, Smola A, Bartlett P, Muller K, Obermayer K, Williamson R (1999) Classification on proximity data with LP-machines. In: Proceedings of ICANN, vol 1, pp 304–309

    Google Scholar 

  • Grauman K, Darrell T (2005) The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of ICCV, vol 2, pp 1458–1465

    Google Scholar 

  • Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  • Hastie T, Tibshirani R (2003) The elements of statistical learning. Springer, New York. ISBN 0387952845

    Google Scholar 

  • Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowl Discov 2(3):283–304

    Article  Google Scholar 

  • Ionescu RT, Popescu M (2013) Kernels for visual words histograms. In: Proceedings of ICIAP, vol 8156, pp 81–90

    Google Scholar 

  • Ionescu RT, Popescu M, Cahill A (2014) Can characters reveal your native language? A language-independent approach to native language identification. In: Proceedings of EMNLP, pp 1363–1373

    Google Scholar 

  • Kailing K, Kriegel HP, Kroger P (2004) Density-connected subspace clustering for high-dimensional data. In: Proceedings of SDM

    Google Scholar 

  • Kriegel HP, Kroger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1):1:1–1:58

    Google Scholar 

  • Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of CVPR, vol 2, pp 2169–2178

    Google Scholar 

  • Liao L, Noble WS (2003) Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. J Comput Biol 10(6):857–868

    Google Scholar 

  • Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441

    Article  Google Scholar 

  • Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins CJCH (2002) Text classification using string kernels. J Mach Learn Res 2:419–444

    Google Scholar 

  • Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University Press, New York

    Google Scholar 

  • McCallum A, Nigam K, Ungar LH (2000) Efficient clustering of high-dimensional data sets with application to reference matching. In: Proceedings of ACM SIGKDD, pp 169–178

    Google Scholar 

  • Nadaraya EA (1964) On estimating regression. Theory Probab Appl 9:141–142

    Article  MATH  Google Scholar 

  • Ng RT, Jiawei H (2002) CLARANS: a method for clustering objects for spatial data mining. IEEE Trans Knowl Data Eng 14(5):1003–1016

    Google Scholar 

  • Pekalska E, Duin RPW (2002) Dissimilarity representations allow for building good classifiers. Pattern Recognit Lett 23(8):943–956

    Google Scholar 

  • Popescu M, Dinu LP (2007) Kernel methods and string kernels for authorship identification: the federalist papers case. In: Proceedings of RANLP

    Google Scholar 

  • Popescu M, Grozea C (2012) Kernel methods and string kernels for authorship analysis. CLEF (Online Working Notes/Labs/Workshop)

    Google Scholar 

  • Popescu M, Ionescu RT (2013) The story of the characters, the DNA and the native language. In: Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pp 270–278

    Google Scholar 

  • Popov YV (2007) Multiple genome rearrangement by swaps and by element duplications. Theoret Comput Sci 385(1–3):115–126

    Article  MathSciNet  MATH  Google Scholar 

  • Rubner Y, Tomasi C, Guibas LJ (2000) The Earth Mover’s distance as a metric for image retrieval. Int J Comput Vis 40(2):99–121

    Google Scholar 

  • Sanderson C, Guenter S (2006) Short text authorship attribution via sequence kernels, Markov chains and author unmasking: An investigation. In: Proceedings of EMNLP, pp 482–491

    Google Scholar 

  • Shapira D, Storer JA (2003) Large edit distance with multiple block operations. In: Proceedings of SPIRE, vol 2857, pp 369–377

    Google Scholar 

  • Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Simard P, LeCun Y, Denker JS, Victorri B (1996) Transformation invariance in pattern recognition, tangent distance and tangent propagation. Neural Networks: Tricks of the Trade

    Google Scholar 

  • Vapnik V (2006) Estimation of dependencies based on empirical data (Information Science and Statistics), 2nd edn. Springer, New York

    Google Scholar 

  • Vedaldi A, Zisserman A (2010) Efficient additive kernels via explicit feature maps. In: Proceedings of CVPR, pp 3539–3546

    Google Scholar 

  • Vezzi F, Fabbro CD, Tomescu AI, Policriti A (2012) rNA: a fast and accurate short reads numerical aligner. Bioinformatics 28(1):123–124

    Google Scholar 

  • Vladimir V, Chervonenkis A (1971) On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab Appl 16(2):264–280

    Google Scholar 

  • Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. SIGMOD Rec 25(2):103–114. ISSN 0163–5808

    Google Scholar 

  • Zhang B, Srihari SN (2004) Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans Pattern Anal Mach Intell 26(4):525–528, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Tudor Ionescu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ionescu, R.T., Popescu, M. (2016). Learning based on Similarity. In: Knowledge Transfer between Computer Vision and Text Mining. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-30367-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30367-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30365-9

  • Online ISBN: 978-3-319-30367-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics