Skip to main content

PET/CT of Lung Cancer

  • Chapter
  • First Online:
  • 1487 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Tumors are highly heterogeneous entities, both morphologically and functionally. This heterogeneity applies to the primary tumor and to systemic metastasis. The tumoral molecular profile not only can change and evolve over time across different pathophysiological states but is also capable of dynamically activating its inherent capacity of acquiring resistance to different treatments. Metabolic and molecular imaging techniques such as positron emission tomography (PET) are capable of interrogating in vivo, in one imaging session, several of the abovementioned processes, highlighting some of the heterogeneous signatures of the lung cancer cell phenotype by using specific positron-emitting radiopharmaceuticals. Several of these PET-based molecular probes are available today to noninvasively interrogate glycolytic activity, cellular proliferation, hypoxia, amino acid transport, receptor expression, and apoptosis, among other processes. 18F-Fluorodeoxyglucose (FDG) is a glucose analogue that is widely used clinically to evaluate regional glucose metabolism in several cancer types. FDG-PET yields functional information based on altered tissue metabolism and is useful for both diagnosing and staging cancer. The basis for the use of PET with FDG is the increased glucose consumption by cancer cells compared to normal tissues. In addition, alterations in tissue metabolism that generally precede changes in tumor size are also reflected by this technique. FDG-PET/CT imaging is a superior clinical tool to accurately assess lung cancer's anatomometabolic phenotype. This molecular imaging technique contributes to the diagnosis and initial staging of lung cancer patients by: (a) improving the characterization of the benign or malignant nature of indeterminate solitary pulmonary nodules; (b) complementing conventional imaging techniques to assess primary tumor extent; (c) assessing lymph node status; and (d) detecting systemic disease. FDG-PET/CT also plays an integral role in the subsequent treatment strategy of lung cancer patients. In this context, PET is used to assess the morphologic-metabolic phenotype of tumoral response to cytotoxic and cytostatic cancer therapies, as well as to radiotherapy, and to detect and characterize locorregional and systemic relapse after treatment. PET/CT imaging without a doubt is here to stay as a highly sensitive molecular imaging pearl that provides anatomo-biological and functional insight into the heterogeneous phenotype of lung neoplasia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aparicio S, Caldas C (2013) The implications of clonal genome evolution for cancer medicine. N Engl J Med 368(9):842–851

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumours in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science 124(3215):269–270

    CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Article  CAS  PubMed  Google Scholar 

  • Merrall NW, Plevin R, Gould GW (1993) Growth factors, mitogens, oncogenes and the regulation of glucose transport. Cell Signal 5:667–675

    Article  CAS  PubMed  Google Scholar 

  • Garcia C, Gebhart G, Flamen P (2012) New PET imaging agents in the management of solid cancers. Curr Opin Oncol 24:748–755

    Article  CAS  PubMed  Google Scholar 

  • Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 287:914–924

    Article  Google Scholar 

  • Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    CAS  PubMed  Google Scholar 

  • Cronin P, Dwamena B, Kelly AM, Carlos RC (2008) Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology 246:772–782

    Article  PubMed  Google Scholar 

  • Bryant AS, Cerfolio RJ (2006) The maximum standardized uptake values on integrated FDG-PET/CT is useful in differentiating benign from malignant pulmonary nodules. Ann Thorac Surg 82:1016–1020

    Article  PubMed  Google Scholar 

  • Christensen JA, Nathan MA, Mullan BP, Hartman TE, Swensen SJ, Lowe VJ (2006) Characterization of the solitary pulmonary nodule: 18F-FDG PET versus nodule-enhancement CT. AJR Am J Roentgenol 187(5):1361–1367

    Article  PubMed  Google Scholar 

  • Yi CA, Lee KS, Kim BT, Choi JY, Kwon OJ, Kim H et al (2006) Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. J Nucl Med 47(3):443–450

    PubMed  Google Scholar 

  • Jeong SY, Lee KS, Shin KM, Bae YA, Kim BT, Choe BK et al (2008) Efficacy of PET/CT in the characterization of solid or partly solid solitary pulmonary nodules. Lung Cancer 61(2):186–194

    Article  PubMed  Google Scholar 

  • Fletcher JW, Kymes SM, Gould M, Alazraki N, Coleman RE, Lowe VJ, Marn C, Segall G, Thet LA, Lee K, VA SNAP Cooperative Studies Group (2008a) A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med 49:179–185

    Article  PubMed  Google Scholar 

  • Divisi D, Di Tommaso S, Di Leonardo G, Brianzoni E, De Vico A, Crisci R (2010) 18-fluorine fluorodeoxyglucose positron emission tomography with computerized tomography versus computerized tomography alone for the management of solitary lung nodules with diameters inferior to 1.5 cm. Thorac Cardiovasc Surg 58(7):422–426

    Article  CAS  PubMed  Google Scholar 

  • Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K (2005) Visual and semiquantitative analyses for F-18 fluorodeoxyglucose PET scanning in pulmonary nodules 1 cm to 3 cm in size. Ann Thorac Surg 79:984–988

    Article  PubMed  Google Scholar 

  • Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ (1994) The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 35(8):1308–1312

    CAS  PubMed  Google Scholar 

  • Grgic A, Yüksel Y, Gröschel A, Schäfers HJ, Sybrecht GW, Kirsch CM, Hellwig D (2010) Risk stratification of solitary pulmonary nodules by means of PET using (18)F-fluorodeoxyglucose and SUV quantification. Eur J Nucl Med Mol Imaging 37(6):1087–1094

    Article  PubMed  Google Scholar 

  • Lowe VJ, Fletcher JW, Gobar L, Lawson M, Kirchner P, Valk P, Karis J, Hubner K, Delbeke D, Heiberg EV, Patz EF, Coleman RE (1998) Prospective investigation of positron emission tomography in lung nodules. J Clin Oncol 16:1075–1084

    CAS  PubMed  Google Scholar 

  • Higashi K, Ueda Y, Seki H et al (1998) Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma. J Nucl Med 39:1016–1020

    CAS  PubMed  Google Scholar 

  • Erasmus JJ, McAdams HP, Patz EF Jr, Coleman RE, Ahuja V, Goodman PC (1998) Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Am J Roentgenol 170:1369–1373

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Lee KS, Primack SL, Kim H, Kwon OJ, Kim TS, Kim EA, Kim J, Shim YM (2002) Small pulmonary nodules on CT accompanying surgically resectable lung cancer: likelihood of malignancy. J Thorac Imaging 17:40–46

    Article  PubMed  Google Scholar 

  • Chalmers N, Best JJ (1991) The significance of pulmonary nodules detected by CT but not by chest radiography in tumor staging. Clin Radiol 44:410–412

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Matsumoto T, Hiyama A, Miura G, Tanaka N, Emoto T, Kawamura T, Matsunaga N (2003) The probability of malignancy in small pulmonary nodules coexisting with potentially operable lung cancer detected by CT. Eur Radiol 13:2447–2453

    Article  PubMed  Google Scholar 

  • Jones HA, Clark RJ, Rhodes CG, Schofield JB, Krausz T, Haslett C (1991) Positron emission tomography of 18FDG uptake in localized pulmonary inflammation. Acta Radiol Suppl 376:148

    CAS  PubMed  Google Scholar 

  • Wachsmann J, Gerbaudo VH (2014) Thorax: normal and benign pathologic patterns in FDG-PET/CT imaging. PET Clin 9(2):147–168

    Article  PubMed  Google Scholar 

  • Alavi A, Gupta N, Alberini JL, Hickeson M, Adam LE, Bhargava P, Zhuang H (2002) Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med 32(4):293–321

    Article  PubMed  Google Scholar 

  • Gould MK, Sanders GD, Barnett PG, Rydzak CE, Maclean CC, McClellan MB, Owens DK (2003a) Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med 138(9):724–735

    Article  PubMed  Google Scholar 

  • Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF (2008b) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508

    Article  PubMed  Google Scholar 

  • Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, von Schulthess GK, Steinert HC (2003) Staging of non–small-cell lung cancer with integrated positron emission tomography and computed tomography. N Engl J Med 348:2500–2507

    Article  PubMed  Google Scholar 

  • Antoch G, Stattaus J, Nemat AT, Marnitz S, Beyer T, Kuehl H, Bockisch A, Debatin JF, Freudenberg LS (2003) Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229(2):526–533

    Article  PubMed  Google Scholar 

  • Gerbaudo VH, Julius B (2007) Anatomo-metabolic characteristics of atelectasis in F-18 FDG-PET/CT imaging. Eur J Radiol 64(3):401–405

    Article  PubMed  Google Scholar 

  • Dizendorf EV, Baumert BG, von Schulthess GK et al (2003) Impact of whole-body 18E-EDG PET on staging and managing patients for radiation therapy. J Nucl Med 44:24–29

    PubMed  Google Scholar 

  • Gould MK, Kuschner WG, Rydzak CE, Maclean CC, Demas AN, Shigemitsu H, Chan JK, Owens DK (2003b) Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 139:879–892

    Article  PubMed  Google Scholar 

  • Toloza EM, Harpole L, McCrory DC (2003) Noninvasive staging of non-small cell lungcancer: a review of the current evidence. Chest 123(1 Suppl):137S–146S

    Article  PubMed  Google Scholar 

  • Reed CE, Harpole DH, Posther KE, Woolson SL, Downey RJ, Meyers BF, Heelan RT, Macapinlac HA, Jung SH, Silvestri GA, Siegel BA, Rusch VW, American College of Surgeons Oncology Group Z0050 trial (2003) Results of the American College of Surgeons Oncology Group Z0050 trial: the utility of positron emission tomography in staging potentially operable non-small cell lung cancer. J Thorac Cardiovasc Surg 126(6):1943–1951

    Article  PubMed  Google Scholar 

  • Kim BT, Lee KS, Shim SS, Choi JY, Kwon OJ, Kim H, Shim YM, Kim J, Kim S (2006) Stage T1 non-small cell lung cancer: preoperative mediastinal nodal staging with integrated FDG PET/CT--a prospective study. Radiology 241(2):501–509

    Article  PubMed  Google Scholar 

  • Vansteenkiste JF (2005) FDG-PET for lymph node staging in NSCLC: a major step forward, but beware of the pitfalls. Lung Cancer 47(2):151–153

    Article  PubMed  Google Scholar 

  • de Langen AJ, Raijmakers P, Riphagen I, Paul MA, Hoekstra OS (2006) The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysis. Eur J Cardiothorac Surg 29(1):26–29

    Article  PubMed  Google Scholar 

  • Fischer BM, Mortensen J, Hansen H, Vilmann P, Larsen SS, Loft A, Bertelsen AK, Ravn J, Clementsen P, Høegholm A, Larsen KR, Dirksen A, Skov BG, Krasnik M, Højgaard L, Lassen U (2011) Multimodality approach to mediastinal staging in non-small cell lung cancer. Faults and benefits of PET-CT: a randomised trial. Thorax 66(4):294–300

    Article  PubMed  Google Scholar 

  • Sider L, Horejs D (1988) Frequency of extrathoracic metastases from bronchogenic carcinoma in patients with normal-sized hilar and mediastinal lymph nodes on CT. AJR Am J Roentgenol 151(5):893–895

    Article  CAS  PubMed  Google Scholar 

  • Hellwig D, Ukena D, Paulsen F, Bamberg M, Kirsch CM, Onko-PET der Deutschen Gesellschaft fur Nuklearmedizin (2001) Meta-analysis of the efficacy of positron emission tomography with F-18-fluorodeoxyglucose in lung tumors. Basis for discussion of the German Consensus Conference on PET in Oncology 2000. Pneumologie 55(8):367–377

    Article  CAS  PubMed  Google Scholar 

  • Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16(10):3375–3379

    CAS  PubMed  Google Scholar 

  • Ak I, Sivrikoz MC, Entok E, Vardareli E (2010) Discordant findings in patients with non-small-cell lung cancer: absolutely normal bone scans versus disseminated bone metastases on positron-emission tomography/computed tomography. Eur J Cardiothorac Surg 37(4):792–796

    Article  PubMed  Google Scholar 

  • Hustinx R, Paulus P, Jacquet N, Jerusalem G, Bury T, Rigo P (1998) Clinical evaluation of whole-body 18F-fluorodeoxyglucose positron emission tomography in the detection of liver metastases. Ann Oncol 9(4):397–401

    Article  CAS  PubMed  Google Scholar 

  • MacManus MP, Hicks RJ, Matthews JP, Hogg A, McKenzie AF, Wirth A, Ware RE, Ball DL (2001) High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 50(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Lardinois D, Weder W, Roudas M, von Schulthess GK, Tutic M, Moch H, Stahel RA, Steinert HC (2005) Etiology of solitary extrapulmonary positron emission tomography and computed tomography findings in patients with lung cancer. J Clin Oncol 23:6846–6853

    Article  PubMed  Google Scholar 

  • Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie AF, Matthews JP, Ball DL (2001a) (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 42(11):1596–1604

    CAS  PubMed  Google Scholar 

  • Gregory DL, Hicks RJ, Hogg A, Binns DS, Shum PL, Milner A, Link E, Ball DL, Mac Manus MP (2012) Effect of PET/CT on management of patients with non-small cell lung cancer: results of a prospective study with 5-year survival data. J Nucl Med 53(7):1007–1015

    Article  PubMed  Google Scholar 

  • Jackman DM, Johnson BE (2005) Small-cell lung cancer. Lancet 366(9494):1385–1396

    Article  CAS  PubMed  Google Scholar 

  • Simon GR, Turrisi A, American College of Chest Physicians (2007) Management of small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132(3 Suppl):324S–339S

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Kim EE, Komaki R, Wong FC, Bassa P, Wong WH, Yang DJ, Endo K, Podoloff DA (1995) Detecting recurrent or residual lung cancer with FDG-PET. J Nucl Med 36(5):788–793

    CAS  PubMed  Google Scholar 

  • Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Harris LK, Goodman PC (1994) Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-D-glucose. Radiology 191(2):379–382

    Article  PubMed  Google Scholar 

  • Bury T, Corhay JL, Duysinx B, Daenen F, Ghaye B, Barthelemy N, Rigo P, Bartsch P (1999) Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 14(6):1376–1380

    Article  CAS  PubMed  Google Scholar 

  • Hicks RJ, Kalff V, MacManus MP, Ware RE, McKenzie AF, Matthews JP, Ball DL (2001b) The utility of (18)F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med 42(11):1605–1613

    CAS  PubMed  Google Scholar 

  • Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, Seki H, Taki S, Tonami H, Yamamoto I (2002) 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cancer. J Nucl Med 43(1):39–45

    PubMed  Google Scholar 

  • Singnurkar A, Solomon SB, Gönen M, Larson SM, Schöder H (2011) 18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions. J Nucl Med 52(1):106

    Google Scholar 

  • Shiono S, Abiko M, Sato T (2011) Positron emission tomography/computed tomography and lymphovascular invasion predict recurrence in stage I lung cancers. J Thorac Oncol 6(1):43–47

    Article  PubMed  Google Scholar 

  • Hellwig D, Gröschel A, Graeter TP, Hellwig AP, Nestle U, Schäfers HJ, Sybrecht GW, Kirsch CM (2006) Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging 33(1):13–21

    Article  PubMed  Google Scholar 

  • Kanzaki R, Higashiyama M, Maeda J, Okami J, Hosoki T, Hasegawa Y, Takami M, Kodama K (2010) Clinical value of F18-fluorodeoxyglucose positron emission tomography-computed tomography in patients with non-small cell lung cancer after potentially curative surgery: experience with 241 patients. Interact Cardiovasc Thorac Surg 10(6):1009–1014

    Article  PubMed  Google Scholar 

  • Huang K, Dahele M, Senan S, Guckenberger M, Rodrigues GB, Ward A, Boldt RG, Palma DA (2012) Radiographic changes after lung stereotactic ablative radiotherapy (SABR)--can we distinguish recurrence from fibrosis? A systematic review of the literature. Radiother Oncol 102(3):335–342

    Article  PubMed  Google Scholar 

  • Hicks RJ, Mac Manus MP, Matthews JP, Hogg A, Binns D, Rischin D, Ball DL, Peters LJ (2004) Early FDG-PET imaging after radical radiotherapy for non-small-cell lung cancer: inflammatory changes in normal tissues correlate with tumor response and do not confound therapeutic response evaluation. Int J Radiat Oncol Biol Phys 60(2):412–418

    Article  PubMed  Google Scholar 

  • Vansteenkiste J, Fischer BM, Dooms C, Mortensen J (2004) Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systematic review. Lancet Oncol 5:531–540

    Article  PubMed  Google Scholar 

  • Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, Schwaiger M (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 21:2651–2657

    Article  CAS  PubMed  Google Scholar 

  • Cerfolio RJ, Bryant AS, Winokur TS, Ohja B, Bartolucci AA (2004) Repeat 18F- FDG-PET after neoadjuvant therapy is a predictor of pathologic response in patients with non-small cell lung cancer. Ann Thorac Surg 78:1903–1909

    Article  PubMed  Google Scholar 

  • Hoekstra CJ, Stroobants SG, Smit EF, Vansteenkiste J, van Tinteren H, Postmus PE, Golding RP, Biesma B, Schramel FJ, van Zandwijk N, Lammertsma AA, Hoekstra OS (2005) Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer. J Clin Oncol 23(33):8362–8370

    Article  PubMed  Google Scholar 

  • Dooms C, Verbeken E, Stroobants S, Nackaerts K, De Leyn P, Vansteenkiste J (2008) Prognostic stratification of stage IIIA-N2 non-small-cell lung cancer after induction chemotherapy: a model based on the combination of morphometric-pathologic response in mediastinal nodes and primary tumor response on serial 18-fluoro-2-deoxy-glucose positron emission tomography. J Clin Oncol 26(7):1128–1134

    Article  PubMed  Google Scholar 

  • Tanvetyanon T, Eikman EA, Sommers E, Robinson L, Boulware D, Bepler G (2008) Computed tomography response, but not positron emission tomography scan response, predicts survival after neoadjuvant chemotherapy for resectable non-small-cell lung cancer. J Clin Oncol 26(28):4610–4616

    Article  PubMed  Google Scholar 

  • Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 8(7):823–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  CAS  PubMed  Google Scholar 

  • Sunaga N, Oriuchi N, Kaira K, Yanagitani N, Tomizawa Y, Hisada T, Ishizuka T, Endo K, Mori M (2008) Usefulness of FDG-PET for early prediction of the response to gefitinib in non-small cell lung cancer. Lung Cancer 59(2):203–210

    Article  PubMed  Google Scholar 

  • Takahashi R, Hirata H, Tachibana I, Shimosegawa E, Inoue A, Nagatomo I, Takeda Y, Kida H, Goya S, Kijima T, Yoshida M, Kumagai T, Kumanogoh A, Okumura M, Hatazawa J, Kawase I (2012) Early [18F]fluorodeoxyglucose positron emission tomography at two days of gefitinib treatment predicts clinical outcome in patients with adenocarcinoma of the lung. Clin Cancer Res 18(1):220–228

    Article  CAS  PubMed  Google Scholar 

  • Benz MR, Herrmann K, Walter F, Garon EB, Reckamp KL, Figlin R, Phelps ME, Weber WA, Czernin J, Allen-Auerbach MS (2011) (18)F-FDG PET/CT for monitoring treatment responses to the epidermal growth factor receptor inhibitor erlotinib. J Nucl Med 52(11):1684–1689

    Article  CAS  PubMed  Google Scholar 

  • Hachemi M, Couturier O, Vervueren L, Fosse P, Lacœuille F, Urban T, Hureaux J (2014) [18F]FDG positron emission tomography within two weeks of starting erlotinib therapy can predict response in non-small cell lung cancer patients. PLoS One 9(2):e87629

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahuja V, Coleman RE, Herndon J, Patz EF Jr (1998) The prognostic significance of fluorodeoxyglucose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 83(5):918–924

    Article  CAS  PubMed  Google Scholar 

  • Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA (2005) The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 130(1):151–159

    Article  PubMed  Google Scholar 

  • Ohtsuka T, Nomori H, Watanabe K, Kaji M, Naruke T, Suemasu K, Uno K (2006) Prognostic significance of [(18)F]fluorodeoxyglucose uptake on positron emission tomography in patients with pathologic stage I lung adenocarcinoma. Cancer 107(10):2468–2473

    Article  PubMed  Google Scholar 

  • Nair VS, Barnett PG, Ananth L, Gould MK, Veterans Affairs Solitary Nodule Accuracy Project Cooperative Studies Group (2010) PET scan 18F-fluorodeoxyglucose uptake and prognosis in patients with resected clinical stage IA non-small cell lung cancer. Chest 137(5):1150–1156

    Article  PubMed  Google Scholar 

  • Raz DJ, Odisho AY, Franc BL, Jablons DM (2006) Tumor fluoro-2-deoxy-D-glucose avidity on positron emission tomographic scan predicts mortality in patients with early-stage pure and mixed bronchioloalveolar carcinoma. J Thorac Cardiovasc Surg 132(5):1189–1195

    Article  PubMed  Google Scholar 

  • Machtay M, Duan F, Siegel BA, Snyder BS, Gorelick JJ, Reddin JS, Munden R, Johnson DW, Wilf LH, DeNittis A, Sherwin N, Cho KH, Kim SK, Videtic G, Neumann DR, Komaki R, Macapinlac H, Bradley JD, Alavi A (2013) Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J Clin Oncol 31(30):3823–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte JJ, Mascaux C, Meert AP, Roelandts M, Scherpereel A, Terrones Munoz V, Sculier JP (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol 5(5):612–619

    Article  PubMed  Google Scholar 

  • Larson SM, Erdi Y, Akhurst T, Mazumdar M, Macapinlac HA, Finn RD, Casilla C, Fazzari M, Srivastava N, Yeung HW, Humm JL, Guillem J, Downey R, Karpeh M, Cohen AE, Ginsberg R (1999) Tumor Treatment Response Based on Visual and Quantitative Changesin Global Tumor Glycolysis Using PET-FDG Imaging. The Visual Response Score and the Change in Total Lesion Glycolysis. Clin Positron Imaging 2(3):159–171

    Article  PubMed  Google Scholar 

  • Lee P, Weerasuriya DK, Lavori PW, Quon A, Hara W, Maxim PG, Le QT, Wakelee HA, Donington JS, Graves EE, Loo BW Jr (2007) Metabolic tumor burden predicts for disease progression and death in lung cancer. Int J Radiat Oncol Biol Phys 69(2):328–333

    Article  PubMed  Google Scholar 

  • Dehing-Oberije C, De Ruysscher D, van der Weide H, Hochstenbag M, Bootsma G, Geraedts W, Pitz C, Simons J, Teule J, Rahmy A, Thimister P, Steck H, Lambin P (2008) Tumor volume combined with number of positive lymph node stations is a more important prognostic factor than TNM stage for survival of non-small-cell lung cancer patients treated with (chemo)radiotherapy. Int J Radiat Oncol Biol Phys 70(4):1039–1044

    Article  PubMed  Google Scholar 

  • Barbone D, Follo C, Echeverry M, Gerbaudo VH, Klabatsa A, Bueno R, Felley-Bosco E, Broaddus VC. (2015) Autophagy correlates with the therapeutic responsiveness of malignant pleural mesothelioma in 3D models. PLOS One (in press)

    Google Scholar 

  • Park SY, Cho A, Yu WS, Lee CY, Lee JG, Kim DJ, Chung KY (2015) Prognostic value of total lesion glycolysis by 18F-FDG PET/CT in surgically resected stage IA non-small cell lung cancer. J Nucl Med 56(1):45–49

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wroblewski K, Liao S, Kampalath R, Penney BC, Zhang Y, Pu Y (2013) Prognostic value of metabolic tumor burden from (18)F-FDG PET in surgical patients with non-small-cell lung cancer. Acad Radiol 20(1):32–40

    Article  PubMed  Google Scholar 

  • Liao S, Penney BC, Zhang H, Suzuki K, Pu Y (2012) Prognostic value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in Stage IV nonsurgical small-cell lung cancer. Acad Radiol 19(1):69–77

    Article  PubMed  Google Scholar 

  • Ohri N, Duan F, Machtay M, Gorelick JJ, Snyder BS, Alavi A, Siegel BA, Johnson DW, Bradley JD, DeNittis A, Werner-Wasik M (2015) Pretreatment FDG-PET metrics in stage III non-small cell lung cancer: ACRIN 6668/RTOG 0235. J Natl Cancer Inst 107(4), pii: djv004

    Google Scholar 

  • Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3(6):573–589

    Article  PubMed  PubMed Central  Google Scholar 

  • van Gómez LO, García Vicente AM, Honguero Martínez AF, Soriano Castrejón AM, Jiménez Londoño GA, Udias JM, León AP (2014) Heterogeneity in [18F]fluorodeoxyglucose positron emission tomography/computed tomography ofnon-small cell lung carcinoma and its relationship to metabolic parameters and pathologic staging. Mol Imaging 13:1–12

    Google Scholar 

  • Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55(3):414–422

    Article  CAS  PubMed  Google Scholar 

  • Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, Marsden P, Ahmad S, Landau D (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 54(1):19–26

    Article  PubMed  Google Scholar 

  • Cook GJ, O'Brien ME, Siddique M, Chicklore S, Loi HY, Sharma B, Punwani R, Bassett P, Goh V, Chua S (2015) Non-Small Cell Lung Cancer Treated with Erlotinib:Heterogeneity of (18)F-FDG Uptake at PET-Association with Treatment Response and Prognosis. Radiology 276(3):883–93, 141309

    Article  PubMed  Google Scholar 

  • Kamel EM, Zwahlen D, Wyss MT, Stumpe KD, von Schulthess GK, Steinert HC (2003) Whole-body (18)F-FDG PET improves the management of patients with small cell lung cancer. J Nucl Med 44:1911–1917

    PubMed  Google Scholar 

  • Bradley JD, Dehdashti F, Mintun MA, Govindan R, Trinkaus K, Siegel BA (2004) Positron emission tomography in limited-stage small-cell lung cancer: a prospective study. J Clin Oncol 22:3248–3254

    Article  PubMed  Google Scholar 

  • Shen YY, Shiau YC, Wang JJ, Ho ST, Kao CH (2002) Whole-body 18F-2 deoxyglucose positron emission tomography in primary staging small cell lung cancer. Anticancer Res 22:1257–1264

    PubMed  Google Scholar 

  • Azad A, Chionh F, Scott AM, Lee ST, Berlangieri SU, White S et al (2010) High impact of 18F-FDG-PET on management and prognostic stratification of newly diagnosed small cell lung cancer. Mol Imaging Biol 12:443–451

    Article  PubMed  Google Scholar 

  • Fischer BM, Mortensen J, Langer SW, Loft A, Berthelsen AK, Daugaard G, Lassen U, Hansen HH (2006) PET/CT imaging in response evaluation of patients with small cell lung cancer. Lung Cancer 54(1):41–49

    Article  PubMed  Google Scholar 

  • Lee YJ, Cho A, Cho BC, Yun M, Kim SK, Chang J, Moon JW, Park IK, Choi HJ, Kim JH (2009) High tumor metabolic activity as measured by fluorodeoxyglucose positron emission tomography is associated with poor prognosis in limitedand extensive stage small-cell lung cancer. Clin Cancer Res 15(7):2426–2432

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor H. Gerbaudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Gerbaudo, V.H., Garcia, C.A. (2016). PET/CT of Lung Cancer. In: Schoepf, U., Meinel, F. (eds) Multidetector-Row CT of the Thorax. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-319-30355-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30355-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30353-6

  • Online ISBN: 978-3-319-30355-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics