Skip to main content

Gene Therapy for Bleeding Disorders

  • Chapter
  • First Online:
Nonmalignant Hematology

Abstract

Gene therapy refers to any therapy in which the therapeutic entity is a nucleic acid. Gene therapy most commonly delivers a DNA sequence, the transcription of which produces a protein to perform a therapeutic function. Other approaches have delivered RNA, short interfering RNA (siRNA), RNA aptamers, nucleases (e.g., to knock out host cell genes or to facilitate “editing” of genomic DNA), or sequences to express antigens that produce specific immunization. Considered most broadly, there are two approaches to introduce therapeutic genes. The first is to directly introduce the nucleic acid sequences of interest into the target tissue in vivo. Transfer of the nucleic acid may or may not employ a delivery vehicle, referred to as a vector. Naked DNA or RNA transfer is in general inefficient unless mediated by a virus or other vector. In nature, viruses have evolved mechanisms to enter cells and deliver their viral DNA (or RNA) to the nucleus of cells, where they hijack the host cell’s machinery to transcribe and translate the virus’ genetic payload. Dozens of viruses have been investigated as potential gene delivery vectors. The second approach is to introduce the gene of interest ex vivo into cells (whether allogeneic or autologous) in culture, expand if desired the cells that express the gene efficiently, and then introduce the cells with their transgenic payload into the host. The goal of correcting hemophilia, the most common severe bleeding disorder, has been approached using multiple variations of in vivo vectors and ex vivo cell-based strategies over the last quarter century, ultimately leading to partial correction of hemophilia B in a human clinical trial (St. Louis and Verma 1988; Palmer et al. 1989; Nathwani et al. 2011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013;122(19):3283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annoni A, Brown BD, Cantore A, Sergi Sergi L, Naldini L, Roncarolo M-G. In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunological tolerance. Blood. 2009;114(25):5152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annoni A, Cantore A, Della Valle P, Goudy K, Akbarpour M, Russo F, et al. Liver gene therapy by lentiviral vectors reverses anti-factor IX pre-existing immunity in haemophilic mice. EMBO Mol Med. 2013;5(11):1684–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruda VR, Hagstrom JN, Deitch J, Heiman-Patterson T, Camire RM, Chu K, et al. Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood. 2001;97(1):130–8.

    Article  CAS  PubMed  Google Scholar 

  • Barzel A, Paulk N, Shi Y, Huang Y, Chu K, Zhang F, et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nat Nat Publ Group. 2015;517(7534):360–4.

    CAS  Google Scholar 

  • Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.

    Article  CAS  PubMed  Google Scholar 

  • Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P, et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice plenary paper A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood. 2007;110(13):4144–52.

    Article  CAS  PubMed  Google Scholar 

  • Buchlis G, Podsakoff GM, Radu A, Hawk SM, Flake AW, Mingozzi F, et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood. 2012;119(13):3038–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol. 2011;18(9):1586–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantore A, Ranzani M, Bartholomae CC, Volpin M, Della Valle P, Sanvito F, et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci Transl Med. 2015;7(277):1–11.

    Article  Google Scholar 

  • Chen Y, Schroeder JA, Kuether EL, Zhang G, Shi Q. Platelet gene therapy by lentiviral gene delivery to hematopoietic stem cells restores hemostasis and induces humoral immune tolerance in FIXnull mice. Mol Ther. 2014;22(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  • Chuah MK, Evens H, VandenDriessche T. Gene therapy for hemophilia. J Thromb Haemost. 2013;11 Suppl 1:99–110.

    Article  PubMed  Google Scholar 

  • Corrigan-Curay J, O’Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, et al. Genome editing technologies: defining a path to clinic. Mol Ther. 2015;23(5):796–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crudele JM, Finn JD, Siner JI, Martin NB, Niemeyer GP, Zhou S, et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood. 2015;125(10):1553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Meyer SF, Vanhoorelbeke K, Chuah MK, Pareyn I, Gillijns V, Hebbel RP, et al. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood. 2006;107(12):4728–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Meyer SF, Vandeputte N, Pareyn I, Petrus I, Lenting PJ, Chuah MKL, et al. Restoration of plasma von willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy for severe von willebrand disease. Arterioscler Thromb Vasc Biol. 2008;28(9):1621–6.

    Article  PubMed  Google Scholar 

  • Den Uijl IEM, Mauser Bunschoten EP, Roosendaal G, Schutgens REG, Biesma DH, Grobbee DE, et al. Clinical severity of haemophilia A: does the classification of the 1950s still stand? Haemophilia. 2011;17(6):849–53.

    Article  Google Scholar 

  • Doering CB, Spencer HT. Replacing bad (F)actors: hemophilia. Hematol Am Soc Hematol Educ Progr Soc. 2014;2014(1):461–7.

    Google Scholar 

  • Du LM, Nurden P, Nurden AT, Nichols TC, Bellinger DA, Jensen ES, et al. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat Commun Nat Publ Group. 2013;4:2773.

    CAS  Google Scholar 

  • Fang J, Hodivala-Dilke K, Johnson BD, Du LM, Hynes RO, White GC, et al. Therapeutic expression of the platelet-specific integrin, αIIbβ3, in a murine model for Glanzmann thrombasthenia. Blood. 2005;106(8):2671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Jensen ES, Boudreaux MK, Du LM, Hawkins TB, Koukouritaki SB, et al. Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A. 2011;108(23):9583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn JD, Ozelo MC, Sabatino DE, Franck HWG, Merricks EP, Crudele JM, et al. Eradication of neutralizing antibodies to factor VIII in canine hemophilia A after liver gene therapy. Blood. 2010;116(26):5842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French DL, Coller BS. Hematologically important mutations: Glanzmann Thrombasthenia. Blood Cells Mol Dis. 1997;23(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  • Greene TK, Lyde RB, Bailey SC, Lambert MP, Zhai L, Sabatino DE, et al. Apoptotic effects of platelet factor VIII on megakaryopoiesis: implications for a modified human FVIII for platelet-based gene therapy. J Thromb Haemost. 2014;12(12):2102–12.

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi CM, Chen F, Wu C, Weiss HJ, Coller BS, French DL. Glycoprotein IIb Leu214Pro mutation produces glanzmann thrombasthenia with both quantitative and qualitative abnormalities in GPIIb/IIIa. Blood. 1998;91(5):1562–71.

    CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastie E, Samulski RJ. AAV at 50: a golden anniversary of discovery, research, and gene therapy success, a personal perspective. Hum Gene Ther. 2015;26(5):257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzog RW, Hagstrom JN, Kung SH, Tai SJ, Wilson JM, Fisher KJ, et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci U S A. 1997;94(11):5804–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaji S, Kuether EL, Fahs SA, Schroeder JA, Ware J, Montgomery RR, et al. Correction of murine Bernard–Soulier syndrome by lentivirus-mediated gene therapy. Mol Ther Nat Publ Group. 2012;20(3):625–32.

    Article  CAS  Google Scholar 

  • Kennedy MA, Parks RJ. Adenovirus virion stability and the viral genome: size matters. Mol Ther. 2009;17(10):1664–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keravala A, Chavez CL, Hu G, Woodard LE, Monahan PE, Calos MP. Long-term phenotypic correction in factor IX knockout mice by using phiC31 integrase-mediated gene therapy. Gene Ther. 2011;18(8):842–8.

    Article  CAS  PubMed  Google Scholar 

  • Kuether EL, Schroeder JA, Fahs SA, Cooley BC, Chen Y, Montgomery RR, et al. Lentivirus-mediated platelet gene therapy of murine hemophilia A with pre-existing anti-factor VIII immunity. J Thromb Haemost. 2012;10(8):1570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther. 2001;12(15):1893–905.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Narkbunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ, et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 2012;19(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Sag D, Wang J, Shollenberger LM, Niu F, Yuan X, et al. Sine-wave current for efficient and safe in vivo gene transfer. Mol Ther. 2007;15(10):1842–7.

    Article  CAS  PubMed  Google Scholar 

  • Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101(8):2963–72.

    Article  CAS  PubMed  Google Scholar 

  • Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  • Margaritis P, Roy E, Faella A, Downey HD, Ivanciu L, Pavani G, et al. Catalytic domain modification and viral gene delivery of activated factor VII confers hemostasis at reduced expression levels and vector doses in vivo. Blood. 2011;117(15):3974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markusic DM, Hoffman BE, Perrin GQ, Nayak S, Wang X, Loduca PA, et al. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies. EMBO Mol Med. 2013;5(11):1698–709.

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Hegadorn C, Ozelo M, Burnett E, Tuttle A, Labelle A, et al. A microRNA-regulated and GP64-pseudotyped lentiviral vector mediates stable expression of FVIII in a murine model of Hemophilia A. Mol Ther Nat Publ Group. 2011;19(4):723–30.

    Article  CAS  Google Scholar 

  • McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8(16):1248–54.

    Article  CAS  PubMed  Google Scholar 

  • Menon T, Firth AL, Scripture-Adams DD, Galic Z, Qualls SJ, Gilmore WB, et al. Lymphoid regeneration from gene-corrected SCID-X1 subject-derived iPSCs. Cell Stem Cell Elsevier Inc. 2015;16(4):367–72.

    Article  CAS  Google Scholar 

  • Miao CH, Brayman AA, Loeb KR, Ye P, Zhou L, Mourad P, et al. Ultrasound enhances gene delivery of human factor IX plasmid. Hum Gene Ther. 2005;16(7):893–905.

    Article  CAS  PubMed  Google Scholar 

  • Miller A. Principles of retroviral vector design. In: Coffin J, Hughes SHV, editors. Retroviruses [Internet]. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1997. Available from: http://www.ncbi.nlm.nih.gov/books/NBK19423/?report=classic.

    Google Scholar 

  • Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monahan PE, Samulski RJ, Tazelaar J, Xiao X, Nichols TC, Bellinger DA, et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Ther. 1998;5(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  • Monahan PE, Lothrop CD, Sun J, Hirsch ML, Kafri T, Kantor B, et al. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol Ther Nat Publ Group. 2010;18(11):1907–16.

    Article  CAS  Google Scholar 

  • Monahan PE, Sun J, Gui T, Hu G, Hannah WB, Wichlan DG, et al. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther. 2015;26(2):69–81.

    Article  CAS  PubMed  Google Scholar 

  • Nair N, Rincon MY, Evens H, Sarcar S, Dastidar S, Samara-Kuko E, et al. Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood. 2014;123(20):3195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani AC, Gray JT, Ng CYC, Zhou J, Spence Y, Waddington SN, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood. 2006;107(7):2653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani AC, Tuddenham EGD, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani AC, Reiss UM, Tuddenham EGD, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurden A, Nurden P. Inherited disorders of platelet function: selected updates. J Thromb Haemost. 2015;13 Suppl 1:S2–9.

    Article  CAS  PubMed  Google Scholar 

  • Palmer D, Thompson AR, Miller AD. Production of human factor IX in animals by genetically modified skin fibroblasts: potential therapy for hemophilia B. Blood. 1989;73(2):438–45.

    CAS  PubMed  Google Scholar 

  • Park C-Y, Kim J, Kweon J, Son JS, Lee JS, Yoo J-E, et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci U S A. 2014;111(25):9253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell JS, Ragni MV, White GC, Lusher JM, Hillman-Wiseman C, Moon TE, et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood. 2003;102(6):2038–45.

    Article  CAS  PubMed  Google Scholar 

  • Roth DA, Tawa Jr NE, O’Brien JM, Treco DA, Selden RF. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia. N Engl J Med. 2001;344(23):1735–42.

    Article  CAS  PubMed  Google Scholar 

  • Sabatino DE, Nichols TC, Merricks E, Bellinger D, Herzog RW, Monahan PE. Animal models of hemophilia. Prog Mol Biol Transl Sci. 2012;105:151–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandrock-lang K, Oldenburg J, Wiegering V, Halimeh S, Santoso S, Kurnik K, et al. Characterisation of patients with Glanzmann thrombasthenia and identification of 17 novel mutations. Thromb Haemost. 2015;113(4):782–91.

    Article  PubMed  Google Scholar 

  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther. 2002;9(2):102–9.

    Article  CAS  PubMed  Google Scholar 

  • Sheridan C. Gene therapy finds its niche. Nat Biotechnol. 2011;29(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Schroeder JA, Kuether EL, Montgomery RR. The important role of von Willebrand factor in platelet-derived FVIII gene therapy for murine hemophilia A in the presence of inhibitory antibodies. J Thromb Haemost. 2015;13(7):1301–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St. Louis D, Verma IM. An alternative approach to somatic cell gene therapy. Proc Natl Acad Sci U S A. 1988;85(9):3150–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan SK, Mills JA, Koukouritaki SB, Vo KK, Lyde RB, Paluru P, et al. High-level transgene expression in induced pluripotent stem cell – derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood. 2014;123(5):753–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwanmanee T, Hu G, Gui T, Bartholomae CC, Kutschera I, von Kalle C, et al. Integration-deficient lentiviral vectors expressing codon-optimized R338L human FIX restore normal hemostasis in Hemophilia B mice. Mol Ther. 2014;22(3):567–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tse LV, Moller-tank S, Asokan A. Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther. 2015;15(6):845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Rosenberg JB, De BP, Ferris B, Wang R, Rivella S, et al. In vivo gene transfer strategies to achieve partial correction of von Willebrand disease. Hum Gene Ther. 2012;23(6):576–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dong B, Firrman J, Roberts S, Moore AR, Cao W, et al. Efficient production of dual recombinant AAV vectors for factor VIII delivery. Hum Gene Ther Methods. 2014;25(4):261–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Shin SC, Chiang AFJ, Khan I, Pan D, Rawlings DJ, et al. Intraosseous delivery of lentiviral vectors targeting factor VIII expression in platelets corrects murine hemophilia A. Mol Ther. 2015;23(4):617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White 2nd GC. Gene therapy in hemophilia: clinical trials update. Thromb Haemost. 2001;86(1):172–7.

    CAS  PubMed  Google Scholar 

  • Wilcox DA, Olsen JC, Ishizawa L, Griffith M, White GC. Integrin alphaIIb promoter-targeted expression of gene products in megakaryocytes derived from retrovirus-transduced human hematopoietic cells. Proc Natl Acad Sci U S A. 1999;96(17):9654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949):1465–8. 80-.

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T, et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther. 2008;16(2):280–9.

    Article  PubMed  Google Scholar 

  • Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18(1):80–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures

Paul E. Monahan receives research support through the University of North Carolina from Asklepios BioPharmaceutical and Novo Nordisk and has received research support in the past from Baxter Healthcare, Pfizer, and Prolor. He holds patents which have been licensed by UNC to Asklepios BioPharmaceutical, for which he receives royalties. He has consulted for Asklepios BioPharmaceutical, for Chatham LLC, and for Baxter Healthcare and has received payment for consultation, services, and speaking and has in addition consulted for Bayer, CSL Behring, and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul E. Monahan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Monahan, P.E., Abajas, Y.L. (2016). Gene Therapy for Bleeding Disorders. In: Abutalib, S., Connors, J., Ragni, M. (eds) Nonmalignant Hematology. Springer, Cham. https://doi.org/10.1007/978-3-319-30352-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30352-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30350-5

  • Online ISBN: 978-3-319-30352-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics