Skip to main content

Numerical Solution of Nonlinear Klein-Gordon Equation Using Polynomial Wavelets

  • Conference paper
  • First Online:
Intelligent Mathematics II: Applied Mathematics and Approximation Theory

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 441))

Abstract

The main aim of this paper is to apply the polynomial wavelets for the numerical solution of nonlinear Klein-Gordon equation. Polynomial scaling and wavelet functions are rarely used in the contexts of numerical computation. A numerical technique for the solution of nonlinear Klein-Gordon equation is presented. Our approach consists of finite difference formula combined with the collocation method, which uses the polynomial wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic equations by expanding the approximate solution in terms of polynomial wavelets with unknown coefficients. An estimation of error bound for this method is investigated. Some illustrative examples are included to demonstrate the validity and applicability of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  2. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)

    MATH  Google Scholar 

  3. Chowdhury, M.S.H., Hashim, I.: Application of homotopy-perturbation method to Klein-Gordon and sine-Gordon equations. Chaos, Solitons Fractals 39(4), 1928–1935 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiminez, S., Vazquez, L.: Analysis of four numerical schemes for a nonlinear Klein-Gordon equation. Appl. Math. Comput. 35, 61–94 (1990)

    MathSciNet  Google Scholar 

  5. Deeba, E., Khuri, S.A.: A decomposition method for solving the nonlinear Klein-Gordon equation. J. Comput. Phys. 124, 442–448 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Khuri, S.A., Sayfy, A.: A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation. Appl. Math. Comput. 216, 1047–1056 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Shokri, A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rashidinia, J., Ghasemi, M., Jalilian, R.: Numerical solution of the nonlinear Klein-Gordon equation. J. Comput. Appl. Math. 233, 1866–1878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lakestani, M., Dehghan, M.: Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation. Comput. Phys. Commun. 181, 1392–1401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wong, Y.S., Chang, Q., Gong, L.: An initial-boundary value problem of a nonlinear Klein-Gordon equation. Appl. Math. Comput. 84, 77–93 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Rashidinia, J., Mohammadi, R.: Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation. Comput. Phys. Commun. 181, 78–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yin, F., Tian, T., Song, J., Zhu, M.: Spectral methods using Legendre wavelets for nonlinear Klein/Sine-Gordon equations. J. Comput. Appl. Math. 275, 321–334 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maleknejad, K., Khademi, A.: Filter matrix based on interpolation wavelets for solving Fredholm integral equations. Commun. Nonlinear. Sci. Numer. Simulat. 16, 4197–4207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kilgore, T., Prestin, J.: Polynomial wavelets on the interval. Constr. Approx. 12, 95–110 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rashidinia, J., Jokar, M.: Application of polynomial scaling functions for numerical solution of telegraph equation. Appl. Anal. (2015). doi:10.1080/00036811.2014.998654

    Google Scholar 

  16. Lakestani, M., Razzaghi, M., Dehghan, M.: Semiorthogonal spline wavelets approximation for Fredholm integro-differential equations. Math. Probl. Eng. 1–12 (2006)

    Google Scholar 

  17. Prestin, J.: Mean convergence of Lagrange interpolation. Seminar Analysis, Operator Equation and Numerical Analysis 1988/89, pp. 75–86. Karl-WeierstraB-Institut für Mathematik, Berlin (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Jokar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rashidinia, J., Jokar, M. (2016). Numerical Solution of Nonlinear Klein-Gordon Equation Using Polynomial Wavelets. In: Anastassiou, G., Duman, O. (eds) Intelligent Mathematics II: Applied Mathematics and Approximation Theory. Advances in Intelligent Systems and Computing, vol 441. Springer, Cham. https://doi.org/10.1007/978-3-319-30322-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30322-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30320-8

  • Online ISBN: 978-3-319-30322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics