Skip to main content

Room Temperature Ionic Liquids

  • Chapter
  • First Online:
Ionic Liquid Properties

Abstract

Room temperature ionic liquids (RTILs) melt below 100 ºC and in this book only commonly available, i.e., aprotic ones, are dealt with, but the properties of two atypical protic ones are shown. The structural aspects of RTILs as derived from diffraction studies and computer simulations, and the modelling of the properties of RTILs are dealt with. The thermochemical data that are tabulated include the melting and decomposition temperatures, the vaporization, cohesive energies and solubility parameters, the critical properties, heat capacities, and surface tension. Also dealt with are the volumetric properties, including the compressibilities and internal pressures. The refractive index and static permittivity are listed. The tabulated and discussed transport properties include the viscosity and electrical and thermal conductivities. The chemical properties that are discussed and listed comprise the solvatochromic parameters, the mutual solubility with water, the hydrophilic/hydrophobic balance, and the solubility of carbon dioxide in the RTILs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108:206–237

    Article  CAS  Google Scholar 

  2. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci (St Peersburg): 405–422

    Google Scholar 

  3. Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ Jr (2006) Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. J Phys Chem B 110:22479–22487, Correction: 26506

    Article  CAS  Google Scholar 

  4. Song X, Kanzaki R, Ishiguro S-I, Umebayashi Y (2012) Physicochemical and acid-base properties of a series of 2-hydroxyethylammonium-based protic ionic liquids. Anal Sci 28:469–480

    Article  CAS  Google Scholar 

  5. Hayes R, Imberti S, Warr GG, Atkin R (2013) the nature of hydrogen bonding in protic ionic liquids. Angew Chem Int Ed 52:4623–4627

    Article  CAS  Google Scholar 

  6. Arancibia EL, Castells RC, Nardillo AG (1987) Thermodynamic study of the behavior of two molten organic salts as stationary phases in gas chromatography. J Chromatogr 398:21–29

    Article  CAS  Google Scholar 

  7. Evans FD, Chen S-H, Schriver GW, Arnett EM (1981) Thermodynamics of solution of nonpolar gases in a fused salt. Hydrophobic bonding behavior in a nonaqueous system. J Am Chem Soc 103:481–482

    Article  CAS  Google Scholar 

  8. Henderson WA, Fylstra P, De Long HC, Trulova PC, Parsons S (2012) Crystal structure of the ionic liquid EtNH3NO3 – insights into the thermal phase behavior of protic ionic liquids. Phys Chem Chem Phys 14:16041–16046

    Article  CAS  Google Scholar 

  9. Biquard M, Letellier P, Fromon M (1985) Vapor pressure in the water-ammonium nitrate mixture at 298.15 K. Thermodynamic properties of the water-fused salt system. Can J Chem 63:3587–3595

    Article  CAS  Google Scholar 

  10. Emel’yanenko VN, Boeck G, Verevkin SP, Ludwig R (2014) volatile times for the very first ionic liquid: understanding the vapor pressures and enthalpies of vaporization of ethylammonium nitrate. Chem Eur J 20:11640–11645

    Article  CAS  Google Scholar 

  11. Weingärtner H, Knocks A, Schrader W, Kaatze U (2001) dielectric spectroscopy of the room temperature molten salt ethylammonium nitrate. J Phys Chem A 105:8646–8650

    Article  CAS  Google Scholar 

  12. Allen M, Evans DF, Lumry R (1985) Thermodynamic properties of the ethylammonium nitrate + water system: partial molar volumes, heat capacities, and expansivities. J Solution Chem 14:549–558

    Article  CAS  Google Scholar 

  13. Perron G, Hardy A, Justice J-C, Desnoyers JE (1993) Model system for concentrated electrolyte solutions: thermodynamic and transport properties of ethylammonium nitrate in acetonitrile and in water. J Solution Chem 22:1159–1171

    Article  CAS  Google Scholar 

  14. Evans DF, Yamaguchi A, Roman R, Casassa EZ (1982) Micelle formation in ethylammonium nitrate, a low-melting fused salt. J Colloid Interf Sci 88:89–93

    Article  CAS  Google Scholar 

  15. Hadded M, Bahri H, Letellier P (1986) Surface tensions of water-ethylammonium nitrate binary mixtures at 298 K. J Chim Phys 83:419–426

    CAS  Google Scholar 

  16. Gramstad T, Haszeldine RN (1957) Perfluoroalkyl derivatives of sulfur. VII. Alkyl trifluoromethanesulfonates as alkylating agents, trifluoromethanesulfonic anhydride as a promoter for esterification, and some reactions of trifluoromethanesulfonic acid. J Chem Soc 4069–4079

    Google Scholar 

  17. Corkum R, Milne J (1978) The density, electrical conductivity, freezing point, and viscosity of mixtures of trifluoromethanesulfonic acid and water. Can J Chem 56:1832–1835

    Article  CAS  Google Scholar 

  18. Sarada T, Granata RD, Foley RT (1978) Properties of trifluoromethanesulfonic acid monohydrate pertinent to its use as a fuel cell electrolyte. J Electrochem Soc 125:1899–1906

    Article  CAS  Google Scholar 

  19. Barthel J, Buchner R, Hölzl CG, Conway BE (1998) Dynamics of molten CF3SO3H · H2O probed by temperature dependent dielectric spectroscopy. J Chem Soc Faraday Trans 94:1953–1958

    Article  CAS  Google Scholar 

  20. Barthel J, Maier R, Conway BE (1999) Density, viscosity, and specific conductivity of trifluoromethanesulfonic acid monohydrate from 309.15 K to 408.15 K. J Chem Eng Data 44:155–156

    Article  CAS  Google Scholar 

  21. Hardacre C, Holbrey JD, McMath SEJ, Nieuwenhuyzen M (2002) Small-angle scattering from long-chain alkylimidazolium-based ionic liquids. ACS Symp Ser 818:400–412

    Article  CAS  Google Scholar 

  22. Adya AK (2005) Nanoscopic structure of ionic liquids by neutron and X-ray diffraction. J Indian Chem Soc 82:1197–1225

    CAS  Google Scholar 

  23. Crozier ED, Alberding N, Sundheim BR (1983) EXAFS study of bromomanganate ions in molten salts. J Phys Chem 79:939–943

    Article  CAS  Google Scholar 

  24. Carmichael AJ, Hardacre C, Holbrey JD, Nieuwenhuyzen M, Seddon KR (1999) A method for studying the structure of low-temperature ionic liquids by XAFS. Anal Chem 71:4572–4574

    Article  CAS  Google Scholar 

  25. Takahashi S, Suzuya K, Kohara S, Koura N, Curtiss LA, Saboungi M-L (1999) Structure of 1-ethyl-3-methylimidazolium chloroaluminates. Neutron diffraction measurements and ab initio calculations. Z Phys Chem (Munich) 209:209–221

    Article  CAS  Google Scholar 

  26. Hardacre C, Holbrey JD, McMath SEJ, Bowron DT, Soper AK (2003) Structure of molten 1,3-dimethylimidazolium chloride using neutron diffraction. J Chem Phys 118:273–279

    Article  CAS  Google Scholar 

  27. Hardacre C, McMath SEJ, Nieuwenhuyzen M, Bowron DT, Soper AK (2003) Liquid structure of 1, 3-dimethylimidazolium salts. J Phys Condens Matter 15:S159–S166

    Article  CAS  Google Scholar 

  28. Hagiwara R, Matsumoto K, Tsuda T, Ito Y, Kohara S, Suzuya K, Matsumoto H, Miyazaki Y (2002) The structures of alkylimidazolium fluorohydrogenate molten salts studied by high-energy X-ray diffraction. J Non-chryst Solids 312–314:414–418

    Article  Google Scholar 

  29. Bradley AE, Hardacre C, Holbrey JD, Johnston S, McMath SEJ, Nieuwenhuyzen M (2002) small-angle x-ray scattering studies of liquid crystalline 1-alkyl-3-methylimidazolium salts. Chem Mater 14:629–635

    Article  CAS  Google Scholar 

  30. Mizuhata M, Maekawa M, Deki S (2007) Ordered structure in room temperature molten salts containing aliphatic quaternary ammonium ions. ECS Trans 3:89–95

    Article  CAS  Google Scholar 

  31. Triolo A, Russina O, Fazio B, Appetecchi GB, Carewska M, Passerini S (2009) Nanoscale organization in piperidinium-based room temperature ionic liquids. J Chem Phys 130:164521/1–6

    Article  CAS  Google Scholar 

  32. de Andrade J, Böes ES, Stassen H (2002) A force field for liquid state simulations on room temperature molten salts. 1-Ethyl-3-methylimidazolium tetrachloro-aluminate. J Phys Chem B 106:3546–3548

    Article  CAS  Google Scholar 

  33. Salanne M, Siqueira LJA, Seitsonen AP, Madden PA, Kirchner B (2012) From molten salts to room temperature ionic liquids: Simulation studies on chloroaluminate. systems. Faraday Disc 154:171–188

    Article  CAS  Google Scholar 

  34. Canongia Lopes JNAC, Padua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110:3330–3335

    Article  CAS  Google Scholar 

  35. Dupont J (2011) From molten salts to ionic liquids: a “nano” journey. Acc Chem Res 44:1223–1231

    Article  CAS  Google Scholar 

  36. Lind JE Jr, Abdel-Rehim HAA, Rudich SW (1966) Structure of organic melts. J Phys Chem 70:3610–3619

    Article  CAS  Google Scholar 

  37. Ueno K, Tokuda H, Watanabe M (2010) Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys 12:1649–1658

    Article  CAS  Google Scholar 

  38. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128:13427–13434

    Article  CAS  Google Scholar 

  39. Jenkins HDB, Roobottom HK, Passmore J, Glasser L (1999) Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg Chem 38:3609–3620

    Article  CAS  Google Scholar 

  40. Jenkins HDB, Glasser L (2003) Standard absolute entropy, S 298° values from volume or density. 1. Inorganic materials. Inorg Chem 42:8702–8708

    Article  CAS  Google Scholar 

  41. Klamt A, Schürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  42. Guzman O, Lara JER, del Rio F (2015) Liquid-vapor equilibria of ionic liquids from a saft equation of state with explicit electrostatic free energy contributions. J Phys Chem B 119:5864–5872

    Article  CAS  Google Scholar 

  43. Johnson JK, Muller EA, Gubbins KE (1994) Equation of state for lennard-jones chains. J Phys Chem 98:6413–6419

    Article  CAS  Google Scholar 

  44. Oliveira MB, Llovell F, Coutinho JAP, Vaga LF (2012) Modeling the [NTf2] pyridinium ionic liquids family and their mixtures with the soft statistical associating fluid theory equation of state. J Phys Chem B 116:9089–9100

    Article  CAS  Google Scholar 

  45. Mac Dowell N, Llovell F, Sun N, Hallett JP, George A, Hunt PA, Welton T, Simmons BA, Vega LF (2014) new experimental density data and soft-SAFT models of alkylimidazolium ([CnC1im]+) chloride (Cl-), methylsulfate ([MeSO4]-), and dimethylphosphate ([Me2PO4]-) based ionic liquids. J Phys Chem B 118:6206–6221

    Article  CAS  Google Scholar 

  46. Ji X, Held C, Sadowski G (2012) Modeling imidazolium-based ionic liquids with ePC-SAFT. Fluid Phase Equilib 335:64–75

    Article  CAS  Google Scholar 

  47. Palomar J, Ferro VR, Torrecilla JS, Rodriguez F (2007) density and molar volume predictions using cosmo-rs for ionic liquids. An approach to solvent design. Ind Eng Chem Res 46:6041–6048

    Article  CAS  Google Scholar 

  48. Machida H, Sato Y, Smith RL Jr (2008) Pressure-volume-temperature (PVT) measurements of ionic liquids ([bmim+][PF6−], [bmim+][BF4−], [bmim+][OcSO4−]) and analysis with the Sanchez-Lacombe equation of state. Fluid Phase Equilib 264:147–155

    Article  CAS  Google Scholar 

  49. Preiss UPRM, Slattery JM, Krossing I (2009) In silico prediction of molecular volumes, heat capacities, and temperature-dependent densities of ionic liquids. Ind Eng Chem Res 48:2290–2296

    Article  CAS  Google Scholar 

  50. Hosseini SM, Moghadasi J, Papari MM, Nobandegani FF (2011) Modeling the volumetric properties of mixtures involving ionic liquids using perturbed hard-sphere equation of state. J Mol Liq 160:67–71

    Article  CAS  Google Scholar 

  51. Hosseini SM, Papari MM, Moghadasi J, Nobandegani FF (2012) Performance assessment of new perturbed hard-sphere equation of state for molten metals and ionic liquids: application to pure and binary mixtures. J Non-Cryst Solids 358:1753–1758

    Article  CAS  Google Scholar 

  52. Ma J, Li J, Fan D, Peng C, Liu H, Hu Y (2011) Modeling pVT properties and vapor-liquid equilibrium of ionic liquids using cubic-plus-association equation of state. Chin J Chem Eng 19:1009–1016

    Article  CAS  Google Scholar 

  53. Hosseini SM, Alavianmehr MM, Moghadasi J (2013) Density and isothermal compressibility of ionic liquids from perturbed hard-dimer-chain equation of state. Fluid Phase Equilib 356:185–192

    Article  CAS  Google Scholar 

  54. Machida H, Taguchi R, Sato Y, Smith RL Jr (2011) Measurement and correlation of high pressure densities of ionic liquids, 1-ethyl-3-methylimidazolium l-lactate ([emim][lactate]), 2-hydroxyethyl-trimethylammonium l-lactate ([(C2H4OH)(CH3)3 N][Lactate]), and 1-butyl-3-methylimidazolium chloride ([bmim][Cl]). J Chem Eng Data 56:923–928

    Article  CAS  Google Scholar 

  55. Tome LIN, Gardas RL, Carvalho PJ, Pastoriza-Gallego MJ, Pineiro MM, Coutinho JAP (2011) Measurements and correlation of high-pressure densities of phosphonium based ionic liquids. J Chem Eng Data 56:2205–2217

    Article  CAS  Google Scholar 

  56. IL Thermo Database (2013) Natl Inst Stand Technol No. 147

    Google Scholar 

  57. Shirota H, Mandai T, Fukazawa H, Kazo T (2011) comparison between dicationic and monocationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J Chem Eng Data 56:2453–2459

    Article  CAS  Google Scholar 

  58. Fredlake CP, Crosthwaite JM, Hert DG, Aki SNVK, Brennecke JF (2004) Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data 49:954–964

    Article  CAS  Google Scholar 

  59. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18

    Article  CAS  Google Scholar 

  60. Crosthwaite JM, Muldoon MJ, Dixon JK, Anderson JL, Brennecke JF (2005) Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J Chem Thermodyn 37:559–568

    Article  CAS  Google Scholar 

  61. Blesic M, Swadzba-Kwasny M, Belhocine T, Nimal Guanarantew HQ, Canongia Lopes JN, Costa Gomes MF, Padua AAH, Seddon KR, Rebelo LPN (2009) 1-Alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [C(n)H(2)(n)(+1)mim][C(k)H(2)k)(+1)SO(3)]: synthesis and physicochemical properties. Phys Chem Chem Phys 11:8939–8948

    Article  CAS  Google Scholar 

  62. Liu Q-S, Yang MF, Li P-P, Sun S-S, Weiz-Biermann U, Tan Z-C, Zhang Q-G (2011) Physicochemical properties of ionic liquids [C3py][NTf2] and [C6py][NTf2]. J Chem Eng Data 56:4094–4101

    Article  CAS  Google Scholar 

  63. Liu Q-S, Yang MF, Yan P-F, Liu X-M, Tan Z-C, Weiz-Biermann U (2010) Density and surface tension of ionic liquids [Cnpy][NTf2] (n=2, 4, 5). J Chem Eng Data 55:4928–4930

    Article  CAS  Google Scholar 

  64. Huo Y, Xia S, Zhang Y, Ma P (2009) Group contribution method for predicting melting points of imidazolium and benzimidazolium ionic liquids. Ind Eng Chem Res 48:2212–2217

    Article  CAS  Google Scholar 

  65. Torrecilla JS, Rodriguez F, Bravo JL, Rothenberg G, Seddon KR, Lopez-Martin I (2008) Optimising an artificial neural network for predicting the melting point of ionic liquids. Phys Chem Chem Phys 10:5826–5831

    Article  CAS  Google Scholar 

  66. Luo H, Huang J-F, Dai S (2008) studies on thermal properties of selected aprotic and protic ionic liquids. Sep Sci Technol 43:2473–2488

    Article  CAS  Google Scholar 

  67. Lopez-Martin I, Burello E, Davey PN, Seddon KR, Rothenberg G (2007) Anion and cation effects on imidazolium salt melting points: a descriptor modelling study. ChemPhysChem 8:690–695

    Article  CAS  Google Scholar 

  68. Yoshida Y, Saito G (2006) Influence of structural variations in 1-alkyl-3-methylimida-zolium cation and tetrahalogenoferrate(III) anion on the physical properties of the paramagnetic ionic liquids. J Mater Chem 16:1254–1262

    Article  CAS  Google Scholar 

  69. Zhou Z-B, Takeda M, Ue M (2004) New hydrophobic ionic liquids based on perfluoroalkyltrifluoroborate anions. J Fluor Chem 125:471–476

    Article  CAS  Google Scholar 

  70. Hudleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  71. Wasserscheid P, van Hal R, Bosmann A (2002) 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate – an even ‘greener’ ionic liquid. Green Chem 4:400–404

    Article  CAS  Google Scholar 

  72. Lashkarbolooki M, Zeinolabedini A, Ayatollahi S (2012) Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilib 324:102–107

    Article  CAS  Google Scholar 

  73. Troncoso J, Cerdeirina CA, Sanmaned YA, Romani L, Rebelo LPN (2006) Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2. J Chem Eng Data 51:1856–1859

    Article  CAS  Google Scholar 

  74. Gardas RL, Coutinho JAP (2008) A group contribution method for heat capacity estimation of ionic liquids. Ind Eng Chem Res 47:5751–5757

    Article  CAS  Google Scholar 

  75. Kabo GJ, Paulechka YU, Kabo AG, Blokhin AV (2010) Experimental determination of enthalpy of 1-butyl-3-methylimidazolium iodide synthesis and prediction of enthalpies of formation for imidazolium ionic liquids. J Chem Thermodyn 42:1292–1297

    Article  CAS  Google Scholar 

  76. Freire MG, Teles ARR, Rocha MAA, Schröder B, Neves CMSS, Carvalho PJ, Evtuguin DV, Santos LMNBF, Coutinho JAP (2011) Thermophysical characterization of ionic liquids able to dissolve biomass. J Chem Eng Data 56:4813–4822

    Article  CAS  Google Scholar 

  77. Gomez E, Calvar N, Dominguez A, Macedo EA (2013) Thermal analysis and heat capacities of 1-alkyl-3-methylimidazolium ionic liquids with NTf2-, TFO-, and DCA- anions. Ind Eng Chem Res 52:2103–2110

    Article  CAS  Google Scholar 

  78. Verevkin SP, Zaitsau DH, Emel’yanenko VN, Ralys RV, Yermalayeu AV, Schick C (2013) Does alkyl chain length really matter? Structure-property relationships in thermochemistry of ionic liquids. Thermochem Acta 562:84–95

    Article  CAS  Google Scholar 

  79. Xie Y, Zhang Y, Lu X, Ji X (2014) Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids. Appl Energy 136:325–335

    Article  CAS  Google Scholar 

  80. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110

    Article  CAS  Google Scholar 

  81. Zhu J, Bau L, Chen B, Fei W (2009) Thermodynamical properties of phase change materials based on ionic liquids. Chem Eng J 147:58–62

    Article  CAS  Google Scholar 

  82. Preiss U, Verevkin AP, Koslowski T, Krossing I (2011) Going full circle: phase-transition thermodynamics of ionic liquids. Chem Eur J 17:6508–6517

    Article  CAS  Google Scholar 

  83. Paulechka YU (2010) Heat capacity of room-temperature ionic liquids: a critical review. J Phys Chem Ref Data 39:033108/1–24

    Google Scholar 

  84. Zhu Q, Gao Y, Xiao J, Xie GJ (2012) Preconcentration and determination of aromatic amines with temperature-controlled ionic liquid dispersive liquid phase microextraction in combination with high performance liquid chromatography. AOAC Int 95:1534–1538

    Article  CAS  Google Scholar 

  85. Zhang Y, Maginn EJ (2014) Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids. Phys Chem Chem Phys 16:13489–13499

    Article  CAS  Google Scholar 

  86. Verevkin AP, Zaitsau DH, Emel’yanenko VN, Yermalayeu AV, Schick C, Liu H, Maginn EJ, Bulut S, Krossing I, Kalb R (2013) Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data. J Phys Chem B 117:6473–8486

    Article  CAS  Google Scholar 

  87. Law G, Watson PR (2001) Surface tension measurements of n-alkylimidazolium ionic liquids. Langmuir 17:6138–6141

    Article  CAS  Google Scholar 

  88. Martino W, de la Mora JF, Yoshida Y, Saito G, Wilkes J (2006) Surface tension measurements of highly conducting ionic liquids. Green Chem 8:390–397

    Article  CAS  Google Scholar 

  89. Kilaru P, Baker GA, Scovazzo P (2007) Density surface tension measurements of imidazolium-, quaternary phosphonium-, and ammonium-based room-temperature ionic liquids: data and correlations. J Chem Eng Data 52:2306–2314

    Article  CAS  Google Scholar 

  90. Pereiro AB, Verdia P, Tojo E, Rodriguez A (2007) Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J Chem Eng Data 52:377–380

    Article  CAS  Google Scholar 

  91. Fröba AP, Kremer H, Leipertz A (2008) Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J Phys Chem B 112:12420–12430

    Article  CAS  Google Scholar 

  92. Ghatee MH, Zolghadr AR (2008) Surface tension measurements of imidazolium-based ionic liquids at liquid-vapor equilibrium. Fluid Phase Equilib 263:168–175

    Article  CAS  Google Scholar 

  93. Tong J, Liu Q-S, Xu W-G, Fang F-W, Yang J-Z (2008) Estimation of physicochemical properties of ionic liquids 1-alkyl-3-methylimidazolium chloroaluminate. J Phys Chem B 112:4381–4386

    Article  CAS  Google Scholar 

  94. Klomfar J, Součkova M, Patek J (2009) Surface tension measurements for four 1-alkyl-3-methylimidazolium-based ionic liquids with hexafluorophosphate anion. J Chem Eng Data 54:1389–1394

    Article  CAS  Google Scholar 

  95. Součkova M, Klomfar J, Patek J (2011) Surface tension of 1-alkyl-3-methylimidazolium based ionic liquids with trifluoromethanesulfonate and tetrafluoroborate anion. Fluid Phase Equilib 303:184–190

    Article  CAS  Google Scholar 

  96. Santos CS, Baddelli S (2009) Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C1-C4, C8) in both cation and anion of [RMIM][R-OSO3] by sum frequency generation and surface tension. J Phys Chem B 113:923–933

    Article  CAS  Google Scholar 

  97. Domanska U, Krolikowska M (2010) Effect of temperature and composition on the surface tension and thermodynamic properties of binary mixtures of 1-butyl-3-methylimidazolium thiocyanate with alcohols. J Colloid Interf Sci 348:661–667

    Article  CAS  Google Scholar 

  98. Klomfar J, Součkova M, Patek J (2010) Surface tension measurements with validated accuracy for four 1-alkyl-3-methylimidazolium based ionic liquids. J Chem Thermodyn 42:323–329

    Article  CAS  Google Scholar 

  99. Kolbeck C, Lehmann J, Lovelock KRJ et al (2010) density and surface tension of ionic liquids. J Phys Chem B 114:17025–17036

    Article  CAS  Google Scholar 

  100. Anantharaj R, Benerjee T (2011) Phase behavior of 1-ethyl-3-methylimidazolium thiocyanate ionic liquid with catalytic deactivated compounds and water at several temperatures: experiments and theoretical predictions. Int J Chem Eng 209435/1–13

    Google Scholar 

  101. Guan W, Ma X-X, Li L, Tong J, Fang D-W, Yang J-Z (2011) Ionic parachor and its application in acetic acid ionic liquid homologue 1-alkyl-3-methylimidazolium acetate {[Cnmim][OAc](n = 2,3,4,5,6)}. J Phys Chem B 115:12915–12920

    Article  CAS  Google Scholar 

  102. Klomfar J, Součkova M, Patek J (2011) Temperature dependence of the surface tension and density at 0.1 MPa for 1-ethyl- and 1-butyl-3-methylimidazolium dicyanamide. J Chem Eng Data 56:3454–3462

    Article  CAS  Google Scholar 

  103. Ruso JW, Hoffmann M (2011) Measurements of surface tension and chemical shift on several binary mixtures of water and ionic liquids and their comparison for assessing aggregation. J Chem Eng Data 56:3703–3710

    Article  CAS  Google Scholar 

  104. Anantharaj R, Banerjee T (2013) Thermodynamic properties of 1-ethyl-3-methylimidazolium methanesulphonate with aromatic sulphur, nitrogen compounds at T = 298.15-323.15 K and P = 1 bar. Can J Chem Eng 97:245–256

    Article  CAS  Google Scholar 

  105. Beigi AAN, Abdouss M, Yousefi M, Pourmortazavi AM, Vahid A (2013) Investigation on physical and electrochemical properties of three imidazolium based ionic liquids (1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium methylsulfate). J Mol Liq 177:361–368

    Article  CAS  Google Scholar 

  106. Cao Y, Mu T (2014) Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res 53:8651–8664

    Article  CAS  Google Scholar 

  107. Gruzdev MS, Ramenskaya IM, Chervonova UV, Kumeev RS (2009) Preparation of 1-butyl-3-methylimidazolium salts and study of their phase behavior and intramolecular interactions. Russ J Gen Chem 79:1720–1727

    Article  CAS  Google Scholar 

  108. Yan C, Han M, Wan H, Guan G (2010) QSAR correlation of the melting points for imidazolium bromides and imidazolium chlorides ionic liquids. Fluid Phase Equilib 292:104–109

    Article  CAS  Google Scholar 

  109. Domanska U, Morawski P (2007) Influence of high pressure on solubility of ionic liquids: experimental data and correlation. Green Chem 9:361–368

    Article  CAS  Google Scholar 

  110. Domanska U, Krolikowski M (2010) Phase equilibria study of the binary systems (1-butyl-3-methylimidazolium tosylate ionic liquid + water, or organic solvent). J Chem Thermodyn 42:355–362

    Article  CAS  Google Scholar 

  111. Zhang ZH, Sun LX, Tan ZC, Xu F, Lu XC, Zeng JL, Sawada Y (2007) Thermodynamic investigation of room temperature ionic liquid. Heat capacity and thermodynamic functions of BPBF4. J Therm Anal Calorim 89:289–294

    Article  CAS  Google Scholar 

  112. Pacholec F, Poole CF (1983) Stationary phase properties of the organic molten salt ethylpyridinium bromide in gas chromatography. Chromatographia 17:370–376

    Article  CAS  Google Scholar 

  113. Garcia-Mardones M, Bandres I, Lopez MC, Gascon I, Lafuente C (2012) Experimental theoretical study of two pyridinium-based ionic liquids. J Solution Chem 41:1836–1852

    Article  CAS  Google Scholar 

  114. Calvar N, Gomez E, Macedo EA, Dominguez A (2013) Thermal analysis and heat capacities of pyridinium and imidazolium ionic liquids. Thermochem Acta 565:178–182

    Article  CAS  Google Scholar 

  115. Bandres I, Pera G, Martin S, Castro M, Lafuente C (2009) Thermophysical study of 1-butyl-2-methylpyridinium tetrafluoroborate ionic liquid. J Phys Chem B 113:11936–11942

    Article  CAS  Google Scholar 

  116. Liu Q-S, Li P-P, Weiz-Biermann U, Liu V, Chen J (2012) Density, electrical conductivity, and dynamic viscosity of n-alkyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57:2999–3004

    Article  CAS  Google Scholar 

  117. Yunus NM, Abdul Mutalib MI, Man Z, Bustam MA, Murugesan T (2010) Thermophysical properties of 1-alkylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids. J Chem Thermodyn 42:491–495

    Article  CAS  Google Scholar 

  118. Guerrero H, Martin S, Perez-Gregorio V, Lafuente C, Bandres I (2012) Volumetric characterization of pyridinium-based ionic liquids. Fluid Phase Equilib 317:102–109

    Article  CAS  Google Scholar 

  119. Domanska U, Krolikowski M, Pobudkowska A, Letcher TM (2009) Phase equilibria study of the binary systems (n-butyl-4-methylpyridinium tosylate ionic liquid + organic solvent, or water). J Chem Eng Data 54:1435–1441

    Article  CAS  Google Scholar 

  120. Papaiconomou N, Salminen J, Lee J-M, Prausnitz JM (2007) Physicochemical properties of hydrophobic ionic liquids containing 1-octylpyridinium, 1-octyl-2-methylpyridinium, or 1-octyl-4-methylpyridinium cations. J Chem Eng Data 52:833–840

    Article  CAS  Google Scholar 

  121. Pereiro AB, Rodriguez A, Blesic M, Shimizu K, Lopes JNC, Rebelo LPN (2011) Mixtures of pyridine and nicotine with pyridinium-based ionic liquids. J Chem Eng Data 56:4356–4363

    Article  CAS  Google Scholar 

  122. Tong B, Liu Q-S, Tan Z-C, Welz-Biermann U (2010) Thermochemistry of alkyl pyridinium bromide ionic liquids: calorimetric measurements and calculations. J Phys Chem A 114:3782–3787

    Article  CAS  Google Scholar 

  123. Bandres I, Royo FM, Gascon I, Castro M, Lafuente C (2010) Anion influence on thermophysical properties of ionic liquids: 1-butylpyridinium tetrafluoroborate and 1-butylpyridinium triflate. J Phys Chem B 114:3601–3607

    Article  CAS  Google Scholar 

  124. Iken H, Guillen F, Chaumat H, Mazieres M-R, Plaquevent J-C, Tzedakis T (2012) Scalable synthesis of ionic liquids: comparison of performances of microstructured and stirred batch reactors. Tetrahedron Lett 53:3474–3477

    Article  CAS  Google Scholar 

  125. Bandres I, Lopez MC, Castro M, Barbera J, Lafuente C (2012) Thermophysical properties of 1-propylpyridinium tetrafluoroborate. J Chem Thermodyn 44:148–153

    Article  CAS  Google Scholar 

  126. Garcia-Miaja G, Troncoso J, Romani L (2007) Density and heat capacity as a function of temperature for binary mixtures of 1-butyl-3-methylpyridinium tetrafluoroborate plus water, plus ethanol, and plus nitromethane. J Chem Eng Data 52:2261–2265

    Article  CAS  Google Scholar 

  127. Pinto AM, Rodriguez H, Arce A, Soto A (2013) Carbon dioxide absorption in the ionic liquid 1-ethylpyridinium ethylsulfate and in its mixtures with another ionic liquid. Intl J Greenh Gas Control 18:296–304

    Article  CAS  Google Scholar 

  128. Farhani N, Gharagheizi F, Mirkhani SA, Tumba K (2013) A simple correlation for prediction of heat capacities of ionic liquids. Fluid Phase Equilib 337:73–82

    Article  CAS  Google Scholar 

  129. Sashina ES, Kashirskii DA, Janowska G, Zaborski M (2013) Thermal properties of 1-alkyl-3-methylpyridinium halide-based ionic liquids. Thermochem Acta 568:185–188

    Article  CAS  Google Scholar 

  130. Sattari M, Gharagheizi F, Ilani-Kashkouli P, Mohammadi AH, Ramjugernath DJ (2014) Development of a group contribution method for the estimation of heat capacities of ionic liquids. J Therm Anal Calorim 115:1863–1882

    Article  CAS  Google Scholar 

  131. Domanska U, Krolikowski M, Pobudkowska A, Bochenska P (2012) Solubility of ionic liquids in water and octan-1-ol and octan-1-ol/water, or 2-phenylethanol/water partition coefficients. J Chem Thermodyn 55:225–233

    Article  CAS  Google Scholar 

  132. Bittner B, Wrobel RJ, Milchert E (2012) Physical properties of pyridinium ionic liquids. J Chem Thermodyn 55:159–165

    Article  CAS  Google Scholar 

  133. Garcia-Mardones M, Cea P, Gascon I, Lafuente C (2014) Thermodynamic study of the surface of liquid mixtures containing pyridinium-based ionic liquids and alkanols. J Chem Thermodyn 78:234–240

    Article  CAS  Google Scholar 

  134. Bhattacharjee A, Carvalho PJ, Coutinho JAP (2014) Fluid Phase Equilib 375:80–88

    Article  CAS  Google Scholar 

  135. Wang J-Y, Zhang X-j, Hu Y-q, Qi G-d, Liang L-y (2012) Properties of n-butylpyridinium nitrate ionic liquid and its binary mixtures with water. J Chem Thermodyn 45:43–47

    Article  CAS  Google Scholar 

  136. Li H, Zhao G, Liu, Zhang S (2013) Physicochemical characterization of MFm – based ammonium ionic liquids. J Chem Eng Data 58:1505–1515

    Article  CAS  Google Scholar 

  137. Ballantyne AD, Brisdon AK, Dryfe RA (2008) Immiscible electrolyte systems based on asymmetric hydrophobic room temperature ionic liquids. Chem Commun 4980–4982

    Google Scholar 

  138. Ghatee MH, Zare M (2011) Power-law behavior in the viscosity of ionic liquids: existing a similarity in the power law and a new proposed viscosity equation. Fluid Phase Equilib 311:76–82

    Article  CAS  Google Scholar 

  139. Davey TW, Ducker WA, Hayman AR, Simpson J (1998) Krafft temperature depression in quaternary ammonium bromide surfactants. Langmuir 14:3210–3213

    Article  CAS  Google Scholar 

  140. Scurto MA, Newton E, Weikrl RR, Draucker L, Hallett J, Liotta CL, Leitner W, Eckert CA (2008) Melting point depression of ionic liquids with CO2: phase equilibria. Ind Eng Chem Res 47:493–501

    Article  CAS  Google Scholar 

  141. Köhler S, Liebert T, Heinze T (2009) Ammonium-based cellulose solvents suitable for homogeneous etherification. Macromol Biosci 9:836–841

    Article  CAS  Google Scholar 

  142. Pas SJ, Pringle JM, Forsyth M, MacFarlane DR (2004) Thermal physical properties of an archetypal organic ionic plastic crystal electrolyte. Phys Chem Chem Phys 6:3721–3725

    Article  CAS  Google Scholar 

  143. Krieger BM, Lee HY, Emge TJ, Wishart JF, Castner EW Jr (2010) Ionic liquids and solids with paramagnetic anions. Phys Chem Chem Phys 12:8919–8925

    Article  CAS  Google Scholar 

  144. Henderson WA, Young VG Jr, Passerini S, Trulove PC, De Long HC (2006) Plastic phase transitions in N-Ethyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide. Chem Mater 18:934–938

    Article  CAS  Google Scholar 

  145. Kim K, Cho Y-H, Shin H-C (2013) 1-Ethyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries. J Power Sources 225:113–118

    Article  CAS  Google Scholar 

  146. Xu M, Ivey DG, Xie Z, Qu W, Dy E (2013) The state of water in 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide and its effect on Zn/Zn(II) redox behavior. Electrochim Acta 97:289–295

    Article  CAS  Google Scholar 

  147. Fu S, Gong S, Liu C, Zheng L, Feng, Nie J, Zhou Z (2013) Ionic liquids based on bis(2,2,2-trifluoroethoxysulfonyl)imide with various oniums. Electrochim Acta 94:229–237

    Article  CAS  Google Scholar 

  148. Le M-L-P, Alloin F, Strobel P, Lepretre J-C, Cointeaux L, del Valle CP (2012) Electrolyte based on fluorinated cyclic quaternary ammonium ionic liquids. Ionics 18:817–827

    Article  CAS  Google Scholar 

  149. Sun I-W, Wang HP, Teng H, Su S-G, Lin Y-C, Kuo C-W, Chen P-R, Wu T-Y (2012) Cyclic ammonium-based ionic liquids as potential electrolytes for dye-sensitized solar cells. Int J Elechtrochem Sci 7:9748–9754

    CAS  Google Scholar 

  150. Furlani M, Albinsson I, Mellander B-E, Appetecchi GB, Passerini S (2011) Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. Electrochim Acta 57:220–227

    Article  CAS  Google Scholar 

  151. Domanska U (2010) Physico-chemical properties and phase behaviour of pyrrolidinium-based ionic liquids. Int J Mol Sci 11:1825–1841

    Article  CAS  Google Scholar 

  152. Forsyth SA, Fraser KJ, Howlett PC, MacFarlane DR, Forsyth M (2006) N-Methyl-N-alkylpyrrolidinium nonafluoro-1-butanesulfonate salts: ionic liquid properties and plastic crystal behavior. Green Chem 8:256–261

    Article  CAS  Google Scholar 

  153. MacFarlane DR, Forsyth SA, Golding J, Deacon GB (2002) Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem 4:444–448

    Article  CAS  Google Scholar 

  154. Carvalho PJ, Ventura SPM, Batista MLS, Schröder B, Gonçalves F, Esperança J, Mutelet F, Coutinho JAP (2014) Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs. ammonium cations. J Chem Phys 140:064505/1-9

    Article  CAS  Google Scholar 

  155. Matsumoto H, Sakaebe H, Tatsumi K (2005) Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J Power Sources 146:45–50

    Article  CAS  Google Scholar 

  156. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  157. Gonzalez EJ, Gonzalez B, Macedo EA (2013) Thermophysical properties of the pure ionic liquid 1-Butyl-1-methylpyrrolidinium dicyanamide and its binary mixtures with alcohols. J Chem Eng Data 58:1440–1448

    Article  CAS  Google Scholar 

  158. Shimizu Y, Ohte Y, Yamamura Y, Tsuzuki S, Saito K (2012) Comparative study of imidazolium- and pyrrolidinium-based ionic liquids: thermodynamic properties. J Phys Chem B 116:5406–5413

    Article  CAS  Google Scholar 

  159. Domanska U, Lrolikowska M (2011) Fluid Phase Equilib 308:55–63

    Article  CAS  Google Scholar 

  160. Sanchez LG, Espel JR, Onink F, Meindersma GW, de Haan AB (2009) Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. J Chem Eng Data 54:2803–2812

    Article  CAS  Google Scholar 

  161. Ghatee MH, Bahrami M, Khanjari N (2013) Measurement and study of density, surface tension, and viscosity of quaternary ammonium-based ionic liquids ([N222(n)]Tf2N). J Chem Thermodyn 65:42–52

    Article  CAS  Google Scholar 

  162. Taggougui M, Diaw M, Carre B, Willmann P, Lemordant D (2008) Solvents in salt electrolyte: benefits and possible use as electrolyte for lithium-ion battery. Electrochim Acta 53:5496–5502

    Article  CAS  Google Scholar 

  163. O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J Chem Eng Data 53:2884–2891

    Article  CAS  Google Scholar 

  164. Pan Y, Boyd LE, Kruplak JF, Cleland WE Jr, Wilkes JS, Hussey C (2011) Physical and transport properties of Bis(trifluoromethylsulfonyl)imide-based room-temperature inic liquids: application to the diffusion of Tris(2,2′-bipyridyl)ruthenium(II). J Electrochem Soc 158:F1–F9

    Article  CAS  Google Scholar 

  165. Klomfar J, Souckova M, Patek J (2014) Low temperature densities from (218 to 364) K and up to 50 MPa in pressure and surface tension for Trihexyl(tetradecyl)phosphonium Bis(trifluoromethylsulfonyl)imide and dicyanamide and 1-Hexyl-3-methylimidazolium hexafluorophosphate. J Chem Eng Data 59:2263–2274

    Article  CAS  Google Scholar 

  166. Olivera MB, Dominguez-Perez M, Cabeza O, Lopes-da-Silva JA, Freire MG, Coutinho JAP (2013) Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion. J Chem Thermodyn 64:22–27

    Article  CAS  Google Scholar 

  167. Tsunashima K, Sugiya M (2007) Physical and electrochemical properties of room temperature ionic liquids based on quaternary phosphonium cations. Electrochemical 75:734–736

    Article  CAS  Google Scholar 

  168. Ferreira AGM, Simoes PN, Ferreira AF, Fonseca MA, Oliviera MSA, Trino ASM (2013) Transport thermal properties of quaternary phosphonium ionic liquids and IoNanofluids. J Chem Thermodyn 64:80–92

    Article  CAS  Google Scholar 

  169. Tsunashima K, Kodama S, Sugiya M, Kunugi Y (2010) Physical electrochemical properties of room-temperature dicyanamide ionic liquids based on quaternary phosphonium cations. Electrochim Acta 56:762–766

    Article  CAS  Google Scholar 

  170. Tsunashima K, Kawabara A, Matsumiya M, Kodama S, Enomoto R, Sugiya M, Kunugi Y (2011) Low viscous and highly conductive phosphonium ionic liquids based on bis(fluorosulfonyl)amide anion as potential electrolytes. Electrochem Commun 13:178–181

    Article  CAS  Google Scholar 

  171. Ferreira AGM, Simoes PN, Ferreira AF (2012) Quaternary phosphonium-based ionic liquids: thermal stability and heat capacity of the liquid phase. J Chem Thermodyn 45:16–27

    Article  CAS  Google Scholar 

  172. Sun N, He X, Dong K, Zhang X, Lu X, He H, Zhang S (2006) Prediction of the melting points for two kinds of room temperature ionic liquids. Fluid Phase Equilib 246:137–142

    Article  CAS  Google Scholar 

  173. Bini R, Ciappe C, Duce C, Micheli A, Solaro R, Starita A, Tine MR (2008) Ionic liquids: prediction of their melting points by a recursive neural network model. Green Chem 10:306–309

    Article  CAS  Google Scholar 

  174. Ludwig R, Kragl U (2007) Do we understand the volatility of ionic ligands? Angew Chem Intl Ed 46:6582–6584

    Article  CAS  Google Scholar 

  175. Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tscherisch A, Verevkin SP, Heintz A (2006) Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306

    Article  CAS  Google Scholar 

  176. Esperança JMSS, Lopes JNC, Tariq M, Santos LMNBF, Magee JW, Rebelo LPN (2010) Volatility of aprotic ionic liquids – a review. J Chem Eng Data 55:3–12

    Article  CAS  Google Scholar 

  177. Santos LMNBF, Lopes JN, Coutinho JAP, Esperanca JMSS, Gomes LR, Manucho IM, Rebelo LPNJ (2007) Ionic liquids: first direct determination of their cohesive energy. J Am Chem Soc 129:284–285

    Article  CAS  Google Scholar 

  178. Rocha MAA, Lima CFRAC, Gomes LR, Schroder B, Coutinho JAP, Marrucho IM, Esperança JMSS, Rebelo LPN, Shimizu K, Lopes JNC, Santos LMNBF (2011) High-accuracy vapor pressure data of the extended [Cnmim]NTF2] ionic liquid series: trend changes and structural shifts. J Phys Chem B 115:10919–10926

    Article  CAS  Google Scholar 

  179. Rane KS, Errington JR (2014) Saturation properties of 1-alkyl-3-methylimidazolium based ionic liquids. J Phys Chem B 118:8734–8743

    Article  CAS  Google Scholar 

  180. Paduszynski K, Domanska U (2012) Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT. J Phys Chem B 116:5002–5018

    Article  CAS  Google Scholar 

  181. Greaves TL, Drummond CJ (2013) Solvent nanostructure, the solvophobic effect and amphiphile self-assembly in ionic liquids. Chem Soc Rev 42:1096–1120

    Article  CAS  Google Scholar 

  182. Preiss U, Zaitsau DH, Beichel W, Himmel D, Higelin A, Merz K, Caesa N, Verevkin SP (2015) Estimation of lattice enthalpies of ionic liquids supported by hirshfeld analysis. ChemPhysChem 16:2890–2898

    Article  CAS  Google Scholar 

  183. Rocha MAA, Ribeiro FMS, Schröder B, Coutinho JAP, Santos LMNBF (2014) Volatility study of [C1C1im|[NTf2| and [C2C3im|[NTf2] ionic liquids. J Chem Thermodyn 68:317–321

    Article  CAS  Google Scholar 

  184. Weerachanchai P, Chen Z, Leong SSJ, Chang MW, Lee J-M (2012) Hildebrand solubility parameters of ionic liquids: effects of ionic liquid type, temperature and DMA fraction in ionic liquid. Chem Eng J 213:356–362

    Article  CAS  Google Scholar 

  185. Singh T, Kumar A (2008) Static dielectric constant of room temperature ionic liquids: internal pressure and cohesive energy density approach. J Phys Chem B 112:12968–12972

    Article  CAS  Google Scholar 

  186. Ren N-n, Gong Y-h, Lu Y-z, Meng H, Li C-x (2014) Surface tension measurements for seven imidazolium-based dialkylphosphate ionic liquids and their binary mixtures with water (methanol or ethanol) at 298.15 K and 1 atm. J Chem Eng Data 59:189–196

    Article  CAS  Google Scholar 

  187. Liu Z, Wu X, Wang WA (2006) Novel united-atom force field for imidazolium-based ionic liquids. Phys Chem Chem Phys 8:1096–1104

    Article  CAS  Google Scholar 

  188. Schröder B, Coutinho JAP (2014) Predicting enthalpies of vaporization of aprotic ionic liquids with COSMO-RS. Fluid Phase Equilib 370:24–33

    Article  CAS  Google Scholar 

  189. Jahangiri S, Toghikhani M, Behnejad H, Ahmadi S (2008) Theoretical investigation of imidazolium based ionic liquid/alcohol mixture: a molecular dynamic simulation. Mol Phys 106:1015–1023

    Article  CAS  Google Scholar 

  190. Lovelock KRJ, Armstrong JP, Licence P, Jones RG (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990

    Article  CAS  Google Scholar 

  191. Kilaru PK, Scovazzo P (2008) Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic liquids. Part 2. Using activation energy of viscosity. Ind Eng Chem Res 47:910–919

    Article  CAS  Google Scholar 

  192. Lovelock KRJ, Armstrong JP, Licence P, Jones RG (2014) Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids. Phys Chem Chem Phys 16:1339–1353

    Article  CAS  Google Scholar 

  193. Jaquemin J, Nancarrow P, Rooney DW, Gomes MFC, Husson P, Majer V, Padua AAH, Hardacre C (2008) Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure. J Chem Eng Data 53:2133–2143

    Article  CAS  Google Scholar 

  194. Marciniak A (2010) The solubility parameters of ionic liquids. Int J Mol Sci 11:1973–1990

    Article  CAS  Google Scholar 

  195. Marciniak A (2011) The Hildebrand solubility parameters of ionic liquids – part 2. Int J Mol Sci 12:3553–3575

    Article  CAS  Google Scholar 

  196. Tong J, Yang HX, Liu RJ, Li C, Xia LX, Yang JZ (2014) Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-alkyl-3-methylimidazolium propionate [Cnmim][Pro](n = 4, 5, 6). J Phys Chem B 118:12972–12978

    Article  CAS  Google Scholar 

  197. Sistla YS, Jain L, Khanna A (2012) Validation prediction of solubility parameters of ionic liquids for CO2 capture. Sep Purif Technol 97:51–64

    Article  CAS  Google Scholar 

  198. Lee SH, Lee SB (2005) The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methylimidazolium-based room temperature ionic liquids. Chem Commun 3469–3471

    Google Scholar 

  199. Swiderski K, McLean A, Gordon CM, Vaughan DH (2004) Estimates of internal energies of vaporisation of some room temperature ionic liquids. Chem Commun 2178–2179

    Google Scholar 

  200. Rocha MAA, Santos LMNBF (2013) First volatility study of the 1-alkylpyridinium based ionic liquids by Knudsen effusion. Chem Phys Lett 585:59–62

    Article  CAS  Google Scholar 

  201. Chandran A, Prerkash K, Senepati S (2010) Structure and dynamics of acetate anion-based ionic liquids from molecular dynamics study. Chem Phys 374:46–54

    Article  CAS  Google Scholar 

  202. Xu A, Wang J, Zhang Y, Chen Q (2012) Effect of alkyl chain length in anions on thermodynamic and surface properties of 1-butyl-3-methylimidazolium carboxylate ionic liquids. Ind Eng Chem Res 51:3458–3465

    Article  CAS  Google Scholar 

  203. Vilas M, Rocha MAA, Fernandes AM, Tojo E, Santos LMNBF (2015) Novel 2-alkyl-1-ethylpyridinium ionic liquids: synthesis, dissociation energies and volatility. Phys Chem Chem Phys 17:2560–2572

    Article  CAS  Google Scholar 

  204. Jin H, O’Hare B, Dong J, Arzhantzev S, Baker GA, Wishart JF, Benesi AJ, Maroncelli M (2008) Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethyl-sulfonyl)imide anion with various cations. J Phys Chem B 112:81–92

    Article  CAS  Google Scholar 

  205. Zaitsau DH, Yermalayeu AV, Emel’yanko VN, Heintz A, Verevkin SP, Schick C, Berdzinski S, Strehmel V (2014) Structure-property relationships in ILs: vaporization enthalpies of pyrrolidinium based ionic liquids. J Mol Liq 192:171–176

    Article  CAS  Google Scholar 

  206. Paduszynski K, Domanska U (2013) Experimental and theoretical study on infinite dilution activity coefficients of various solutes in piperidinium ionic liquids. J Chem Thermodyn 60:169–178

    Article  CAS  Google Scholar 

  207. Requejo PF, Gonzalez EJ, Mecedo EA, Dominguez A (2014) Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols. J Chem Thermodyn 74:193–200

    Article  CAS  Google Scholar 

  208. Derecskei B, Derecskei-Kovacs A (2008) Molecular modelling simulations to predict density and solubility parameters of ionic liquids. Mol Simul 34:1167–1175

    Article  CAS  Google Scholar 

  209. Greaves TL, Drummond CJ (2008) Ionic liquids as amphiphile self-assembly media. Chem Soc Rev 37:1709–1726

    Article  CAS  Google Scholar 

  210. Greaves TL, Weerawardena A, Krodkiewska I, Drummond CJ (2008) Protic ionic liquids: physicochemical properties and behavior as amphiphile self-assembly solvents. J Phys Chem B 112:896–905

    Article  CAS  Google Scholar 

  211. Rebelo LPN, Lopes JNC, Esperança JMSS, Filipe E (2005) On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J Phys Chem B 109:6040–6045

    Article  CAS  Google Scholar 

  212. Weiss VC (2010) Guggenheim’s rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids. J Phys Chem B 114:9183–9194

    Article  CAS  Google Scholar 

  213. Rai N, Maginn EJ (2012) Critical behaviour and vapour-liquid coexistence of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids via Monte Carlo simulations. Faraday Disc 154:53–69

    Article  CAS  Google Scholar 

  214. Wu T-Y, Chen B-K, Kuo C-W, Hao L, Peng Y-C, Sun I-W (2012) Standard entropy, surface excess entropy, surface enthalpy, molar enthalpy of vaporization, and critical temperature of bis(trifluoromethanesulfonyl)imide-based ionic liquids. J Taiwan Inst Chem Eng 43:860–867

    Article  CAS  Google Scholar 

  215. Weiss VC, Heggen B, Muller-Plathe F (2010) Critical parameters and surface tension of the room temperature ionic liquid [bmim][PF6]: a corresponding-states analysis of experimental and new simulation data. J Phys Chem C 114:3599–3608

    Article  CAS  Google Scholar 

  216. Almeida HFD, Teles ARR, Lopes-da-Silva JA, Freire MG, Coutinho JAP (2012) Influence of the anion on the surface tension of 1-ethyl-3-methylimidazolium-based ionic liquids. J Chem Thermodyn 54:49–54

    Article  CAS  Google Scholar 

  217. Almeida HFD, Passos H, Lopes-da-Silva JA, Fernandes AM, Freire MG, Coutinho JAP (2012) Thermophysical properties of five acetate-based ionic liquids. J Chem Eng Data 57:3005–3013

    Article  CAS  Google Scholar 

  218. Bhattacharjee A, Luis A, Santos JH, Lopes-da-Silva JA, Freire MG, Carvalho PJ, Coutinho JAP (2014) Thermophysical properties of sulfonium- and ammonium-based ionic liquids. Fluid Phase Equilib 381:36–45

    Article  CAS  Google Scholar 

  219. Bhattacharjee A, Luis A, Lopes-da-Silva JA, Freire MG, Coutinho JAP, Carvalho PJ (2014) Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilib 400:103–113

    Article  CAS  Google Scholar 

  220. Valderrama JO, Robles PA (2007) Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind Eng Chem Res 46:1338–1344

    Article  CAS  Google Scholar 

  221. Valderrama JO, Sanga WW, Lazzus JA (2008) Critical properties, normal boiling temperature, and acentric factor of another 200 ionic liquids. Ind Eng Chem Res 47:1318–1330

    Article  CAS  Google Scholar 

  222. Valderrama JO, Rojas RE (2009) Critical properties of ionic liquids. Ind Eng Chem Res 48:6890–6900 (revisited)

    Google Scholar 

  223. Valderrama JO, Forero LA, Rojas RE (2012) Critical properties and normal boiling temperature of ionic liquids. Update and a new consistency test. Ind Eng Chem Res 51:7838–7844

    Article  CAS  Google Scholar 

  224. Valderrama JO, Forero LA, Rojas RE (2015) Extension of a group contribution method to estimate the critical properties of ionic liquids of high molecular mass. Ind Eng Chem Res 54:3490–3497

    Article  CAS  Google Scholar 

  225. Ge R, Hardacre C, Jacquemin J, Nancarrow P, Rooney DW (2008) Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. J Chem Eng Data 53:2148–2153

    Article  CAS  Google Scholar 

  226. Sanmamed YA, Navia P, Gonzalez-Salgado D, Troncoso J, Romani LJ (2010) Pressure temperature dependence of isobaric heat capacity for [Emim]BF4] [Bmim]BF4] [Hmim]BF4] and [Omim]BF4]. Chem Eng Data 55:600–604

    Article  CAS  Google Scholar 

  227. Glasser L, Jenkins HBD (2011) Ambient isobaric heat capacities, cp,m, for ionic solids and liquids: an application of volume-based thermodynamics (VBT). Inorg Chem 50:8565–8560

    Article  CAS  Google Scholar 

  228. Farahani N, Gharagherzi F, Mirkhani SA, Tumba K (2013) A simple correlation for prediction of heat capacities of ionic liquids. Fluid Phase Equilib 337:73–82

    Article  CAS  Google Scholar 

  229. Larriba C, Yoshida Y, de la Mora JF (2008) Correlation between surface tension and void fraction in ionic liquids. J Phys Chem B 112:12401–12407

    Article  CAS  Google Scholar 

  230. Sugden S (1924) A relation between surface tension, density and chemical composition. J Chem Soc Trans 125:1177–1189

    Article  CAS  Google Scholar 

  231. Ma X-X, Wei J, Guan W, Pan Y, Zheng L, Wu Y, Yang J-Z (2015) Ionic parachor and its application to pyridinium-based ionic liquids of {[CnPy]DCA] (n = 2, 3, 4, 5, 6). J Chem Thermodyn 89:51–59

    Article  CAS  Google Scholar 

  232. Souckova M, Klomfar J, Patek J (2015) Surface tension and 0.1 MPa density data for 1-Cn-3-methylimidazolium iodides with n = 3, 4, and 6, validated using a parachor and group contribution model. J Chem Thermodyn 83:52–60

    Article  CAS  Google Scholar 

  233. Xu W-G, Li L, Ma X-X, Wei J, Duan W-B, Guan W, Yang J-Z (2012) Density surface tension, and refractive index of ionic liquids homologue of 1-alkyl-3-methylimidazolium tetrafluoroborate [Cnmim]BF4] (n = 2,3,4,5,6). J Chem Eng Data 57:2177–2184

    Article  CAS  Google Scholar 

  234. Gardas RL, Coutinho JAP (2008) Applying a QSPR correlation to the prediction of surface tensions of ionic liquids. Fluid Phase Equilib 265:57–65

    Article  CAS  Google Scholar 

  235. Gardas RL, Rooney DW, Hardacre C (2009) Development of a QSPR correlation for the parachor of 1,3-dialkyl imidazolium based ionic liquids. Fluid Phase Equilib 283:31–37

    Article  CAS  Google Scholar 

  236. Lemraski EG, Zobeydi R (2014) Applying parachor method to the prediction of ionic liquids surface tension based on modified group contribution. J Mol Liq 193:204–209

    Article  CAS  Google Scholar 

  237. Shang Q, Yan F, Xia S, Wang Q, Ma P (2013) Predicting the surface tensions of ionic liquids by the quantitative structure property relationship method using a topological index. Chem Eng Sci 101:266–270

    Article  CAS  Google Scholar 

  238. Marcus Y (2015) Volumetric behavior of room temperature ionic liquids: Chapter 19. In: Wilhelm E, Letcher T (eds) Volumetric properties. Royal Society of Chemistry, Cambridge, pp 512–525

    Google Scholar 

  239. Every HA, Bishop AG, MacFarlane DR, Orädd G, Forsyth M (2004) Transport properties in a family of dialkylimidazolium ionic liquids. Phys Chem Chem Phys 6:1758–1765

    Article  CAS  Google Scholar 

  240. Esperança JMSS, Visak ZP, Plechkova NV, Seddon KR, Guedes HJR, Rebelo LPNJ (2006) Density, speed of sound, and derived thermodynamic properties of ionic liquids over an extended pressure range. 4. [C3mim]NTf2] and [C5mim]NTf2]. J Chem Eng Data 51:2009–2015

    Article  CAS  Google Scholar 

  241. Gardas RL, Freire MG, Carvalho PJ, Marrucho IM, Fonseca IM, Ferreira AGM, Coutinho JAP (2007) High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J Chem Eng Data 52:80–88

    Article  CAS  Google Scholar 

  242. Mokhtarani B, Sharifi A, Mortaheb HR, Mirzaei M, Mafi M, Sadeghian F (2009) Density viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures. J Chem Thermodyn 41:1432–1438

    Article  CAS  Google Scholar 

  243. Singh T, Kumar A (2009) Temperature dependence of physical properties of imidazolium based ionic liquids: internal pressure and molar refraction. J Solution Chem 38:1043–1053

    Article  CAS  Google Scholar 

  244. Carrera GVSM, Afonso CAM, Branco LC (2010) Interfacial properties, densities, and contact angles of task specific ionic liquids. J Chem Eng Data 55:609–615

    Article  CAS  Google Scholar 

  245. Sastry NV, Vaghela NM, Macwan PM (2013) Densities, excess molar and partial molar volumes for water + 1-butyl- or, 1-hexyl- or, 1-octyl-3-methylimid-azolium halide room temperature ionic liquids at T = (298.15 and 308.15) K. J Mol Liq 180:12-–18

    Article  CAS  Google Scholar 

  246. Zhao FY, Liang LY, Wang JY, Hu YQ (2012) Density surface tension of binary mixtures of 1-ethyl-3-methylimidazolium nitrate with alcohols. Chin Chem Lett 23:1295–1298

    Article  CAS  Google Scholar 

  247. Akbar MM, Murugesan T (2013) Thermophysical properties of 1-hexyl-3-methylimidazolium tetrafluoroborate [hmim]BF4]+N-methyldiethanolamine (MDEA) at temperatures (303.15 to 323.15) K. J Mol Liq 177:54–59

    Article  CAS  Google Scholar 

  248. Cruz MM, Borges RP, Godinho M, Marques CS et al (2013) Thermophysical and magnetic studies of two paramagnetic liquid salts: [C4mim]FeCl4] and [P66614]FeCl4]. Fluid Phase Equilib 350:43–50

    Article  CAS  Google Scholar 

  249. Matkowsaka D, Hofman T (2013) Volumetric properties of the ionic liquids: [C6mim]MeSO4] [C6mim]EtSO4] [C4mim]EtSO4] and their mixtures with methanol or ethanol. J Mol Liq 177:301–305

    Article  CAS  Google Scholar 

  250. Neves CMSS, Kurnia KA, Shimizu K, Marrucho IM et al (2014) The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour. Phys Chem Chem Phys 16:21340–21348

    Article  CAS  Google Scholar 

  251. Teodorescu M (2014) Isothermal vapor + liquid equilibrium and thermophysical properties for 1-butyl-3-methylimidazolium bromide + 1-butanol binary system. Ind Eng Chem Res 53:13522–13528

    CAS  Google Scholar 

  252. Seddon KR, Stark A, Torres M-J (2002) Viscosity density of 1-alkyl-3-methylimidazolium ionic liquids. ACS Symp Ser 819:34–49

    Article  CAS  Google Scholar 

  253. Domanska U, Krolikowska M, Krolikowski M (2010) Phase behaviour and physico-chemical properties of the binary systems {1-ethyl-3-methylimidazolium thiocyanate, or 1-ethyl-3-methylimidazolium tosylate + water, or + an alcohol}. Fluid Phase Equilib 294:72–83

    Article  CAS  Google Scholar 

  254. de Azevedo R, Esperança JMSS, Szyslowski J, Visak ZP, Pires PF, Guedes HJR, Rebelo LPN (2005) Thermophysical thermodynamic properties of ionic liquids over an extended pressure range: [bmim]NTf] and [hmim]NTf2]. J Chem Thermodyn 37:888–899

    Article  CAS  Google Scholar 

  255. Tome LIN, Carvalho PJ, Freire MG, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP, Gardas RL (2008) Measurements correlation of high-pressure densities of imidazolium-based ionic liquids. J Chem Eng Data 53:1914–1921

    Article  CAS  Google Scholar 

  256. Koller T, Rausch MH, Ramos J, Schulz PS, Wasserscheid P, Ecomonou IG, Fröba AP (2013) Thermophysical properties of the ionic liquids [EMIM]B(CN)4] and [HMIM]B(CN)4]. J Phys Chem B 117:8512–8523

    Article  CAS  Google Scholar 

  257. Kozlov DN, Kiefer J, Seeger T, Fröba AP, Leipertz A (2011) Determination of physicochemical parameters of ionic liquids and their mixtures with solvents using laser-induced gratings. J Phys Chem B 115:8528–8533

    Article  CAS  Google Scholar 

  258. Singh S, Bahadur I, Redhi GG, Ramjugemath D, Ebenso EE (2014) Density and speed of sound measurements of imidazolium-based ionic liquids with acetonitrile at various temperatures. J Mol Liq 200:160–167

    Article  CAS  Google Scholar 

  259. Ye C, Shreeve JM (2007) Rapid accurate estimation of densities of room-temperature ionic liquids and salts. J Phys Chem A 111:1456–1461

    Article  CAS  Google Scholar 

  260. Zheng Y, Dong K, Wang Q, Zhang J, Lu X (2013) Density viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J Chem Eng Data 58:32–42

    Article  CAS  Google Scholar 

  261. Gu Z, Brennecke JF (2002) Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J Chem Eng Data 47:339–345

    Article  CAS  Google Scholar 

  262. Gonzales B, Calvar N, Gomez E, Macedo EA, Dominguez A (2008) Synthesis and physical properties of 1-ethyl 3-methylpyridinium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J Chem Eng Data 53:1824–1828

    Article  CAS  Google Scholar 

  263. Gomez E, Calvar N, Dominguez A, Macedo EA (2010) Synthesis and temperature dependence of physical properties of four pyridinium-based ionic liquids: influence of the size of the cation. J Chem Thermodyn 42:1324–1329

    Article  CAS  Google Scholar 

  264. Liu QS, Tong J, Tan ZC, Welz-Biermann U, Yang JZ (2010) Density surface tension of ionic liquid [C2mim]PF3(CF2CF3)3] and prediction of properties [Cnmim]PF3(CF2CF3)3] (n = 1, 3, 4, 5, 6). J Chem Eng Data 55:2586–2589

    Article  CAS  Google Scholar 

  265. Deng Y, Husson P, Delort V, Bess-Hoggan P, Sancelme M, Costa Gomes MF (2011) Influence of an oxygen functionalization on the physicochemical properties of ionic liquids: density, viscosity, and carbon dioxide solubility as a function of temperature. J Chem Eng Data 56:4194–4202

    Article  CAS  Google Scholar 

  266. Seki S, Tsuzuki S, Hayamizu K, Umebayashi Y, Serizawa N, Takei K, Miyashiro H (2012) Comprehensive refractive index property for room-temperature ionic liquids. J Chem Eng Data 57:2211–2216

    Article  CAS  Google Scholar 

  267. Gardas RL, Costa HF, Freire MG, Carvalho PJ, Marrucho IM, Fonseca IMA, Ferreira AGM, Coutinho JAP (2008) Densities derived thermodynamic properties of imidazolium- pyridinium- pyrrolidinium- and piperidinium-based ionic liquids. J Chem Eng Data 53:805–811

    Article  CAS  Google Scholar 

  268. Safarov J, Kul I, El-Awady WA, Shahverdiyev A, Hassel E (2011) Thermodynamic properties of 1-butyl-3-methylpyridinium tetrafluoroborate. J Chem Thermodyn 43:1315–1322

    Article  CAS  Google Scholar 

  269. Zhao H, Malhorta SV, Luo RG (2003) Phys Chem Liq 41:487–492

    Article  CAS  Google Scholar 

  270. Gonzalez B, Corderi S, Santamaria AG (2013) Application of 1-alkyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids for the ethanol removal from its mixtures with alkanes. J Chem Thermodyn 60:9–14

    Article  CAS  Google Scholar 

  271. Esperança JMSS, Guedes HJR, Blesic M, Rebelo LPN (2006) Densities derived thermodynamic properties of ionic liquids. 3. Phosphonium-based ionic liquids over an extended pressure range. J Chem Eng Data 51:237–242

    Article  CAS  Google Scholar 

  272. Jaquemin J, Husson P, Padua AAH, Majer V (2006) Density and viscosity of several pure and water-saturated ionic liquids. Green Chem 8:172–180

    Article  Google Scholar 

  273. Pereiro AB, Veiga HIM, Esperança JMSS, Rodriguez A (2009) Effect of temperature on the physical properties of two ionic liquids. J Chem Thermodyn 41:1419–1423

    Article  CAS  Google Scholar 

  274. Tariq M, Forte PAS, Gomes MFC, Lopes JNC, Rebelo LPN (2009) Densities refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J Chem Thermodyn 41:790–798

    Article  CAS  Google Scholar 

  275. Adamova G, Gardas RL, Rebelo LPN, Robertson AJ, Seddon KR (2011) Alkyltrioctylphosphonium chloride ionic liquids: synthesis and physicochemical properties. Dalton Trans 40:12750–12764

    Article  CAS  Google Scholar 

  276. Gacino FM, Reguiera T, Lugo L, Comunas MJP, Fernandez J (2011) Influence of molecular structure on densities and viscosities of several ionic liquids. J Chem Eng Data 56:4984–4999

    Article  CAS  Google Scholar 

  277. Gonzalez B, Gomez E, Dominguez A, Vilas M, Tojo E (2011) Physicochemical characterization of new sulfate ionic liquids. J Chem Eng Data 56:14–20

    Article  CAS  Google Scholar 

  278. Gonçalvez FAMM, Costa CSMF, Ferreira CE, Bernardo JCS, Johnson I, Fonseca IMA (2011) Pressure-volume-temperature measurements of phosphonium-based ionic liquids and analysis with simple equations of state. J Chem Thermodyn 43:914–923

    Article  CAS  Google Scholar 

  279. Neves CMSS, Carvalho PJ, Freire MG, Coutinho JAP (2011) Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids. J Chem Thermodyn 43:948–957

    Article  CAS  Google Scholar 

  280. Machanova K, Boisset A, Sedlakova Z, Anouti M, Bendova M, Jaquemin J (2012) Thermophysical properties of ammonium-based bis{(trifluoromethyl)sulfonyl}imide ionic liquids: volumetric and transport properties. J Chem Eng Data 57:2227–2235

    Article  CAS  Google Scholar 

  281. Makino T, Kanakubo M, Umecky T, Suzuki A, Nishida T, Takano J (2012) Electrical conductivities, viscosities, and densities of n-methoxymethyl- and n-butyl-n-methylpyrrolidinium ionic liquids with the bis(fluorosulfonyl)amide anion. J Chem Eng Data 57:751–755

    Article  CAS  Google Scholar 

  282. Kim K-S, Shin B-K, Lee H (2012) Physical electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate. Korean J Chem Eng 21:1010–1014

    Article  Google Scholar 

  283. Liu Q-S, Li P-P, Welz-Biermann U, Liu X-X, Chen L (2013) Density, dynamic viscosity, and electrical conductivity of pyridinium-based hydrophobic ionic liquids. J Chem Thermodyn 66:88–94

    Article  CAS  Google Scholar 

  284. Seoane RG, Corderi S, Gomez E, Calvar N, Gonzalez EJ, Macedo EA, Dominguez A (2012) Temperature dependence and structural influence on the thermophysical properties of eleven commercial ionic liquids. Ind Eng Chem Res 51:2492–2504

    Article  CAS  Google Scholar 

  285. Gardas RL, Coutinho JAP (2009) Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J 55:1274–1290

    Article  CAS  Google Scholar 

  286. Slattery JM, Daguenet C, Dyson PJ, Schubert TJS, Krossing I (2007) How to predict the physical properties of ionic liquids: a volume-based approach. Angew Chem Int Ed 46:5384–5388

    Article  CAS  Google Scholar 

  287. Beichel W, Preiss UP, Verevkin SP, Koslowski T, Krossing I (2014) Empirical description and prediction of ionic liquids’ properties with augmented volume-based thermodynamics. J Mol Liq 192:3–8

    Article  CAS  Google Scholar 

  288. Marcus Y (2015) Ionic and molar volumes of room temperature ionic liquids. J Mol Liq 209:289–293

    Article  CAS  Google Scholar 

  289. Bica K, Deetlefs M, Schröder C, Seddon KR (2013) Polarisabilities of alkylimidazolium ionic liquids. Phys Chem Chem Phys 15:2703–2711

    Article  CAS  Google Scholar 

  290. Gardas RL, Ge R, Goodrich P, Hardacre C, Hussain A, Rooney DW (2010) Thermophysical properties of amino acid-based ionic liquids. J Chem Eng Data 55:1505–1515

    Article  CAS  Google Scholar 

  291. Marcus Y, Jenkins HBD, Glasser L (2002) Ion volumes: a comparison. J Chem Soc Dalton Trans 3795–3798

    Google Scholar 

  292. Xie T, Brockner W, Gjikaj M (2010) New ionic liquid compounds based on tantalum pentachloride TaCl5. Synthesis, structural, and spectroscopic elucidation of the (μ-oxido)chloridotantalates(V) [BMPy]TaCl6] [BMPy]4[(TaCl6)2(Ta2OCl10) and [EMIm]2[Ta2OCl10]. Z Anorg Allg Chem 636:2633–2640

    Article  CAS  Google Scholar 

  293. Matsumoto K, Oka T, Nohira T, Hagiwara R (2013) Polymorphism of alkali bis(fluorosulfonyl)amides (M[N(SO2F)2] M = Na, K, and Cs). Inorg Chem 52:568–576

    Article  CAS  Google Scholar 

  294. Marszalek M, Fei Z, Zhu D-K, Scopelliti R, Dyson PJ, Zakeeruddin SM, Grätzel M (2011) Application of ionic liquids containing tricyanomethanide [c(cn)3] or tetracyanoborate [B(CN)4] anions in dye-sensitized solar cells. Inorg Chem 50:11561–11567

    Article  CAS  Google Scholar 

  295. Henderson WA, Young VG Jr, Pearson W, Passerini S, De Long HC, Trulove PC (2006) Thermal phase behaviour of N-alkyl-N-methylpyrrolidinium and piperidinium bis(trifluoromethanesulfonyl)imide salts. J Phys Condens Matter 18:10377–10390

    Article  CAS  Google Scholar 

  296. Kutuniva J, Oilun-Kaniemi R, Laitinen RS, Asikkala J, Kärkkäinen J, Lajunen MK (2007) Synthesis and structural characterization of 1-butyl-2,3-dimethyl-imidazolium bromide and iodide. Z Naturforsch 62b:868–870

    Google Scholar 

  297. Gardas RL, Coutinho JAP (2008) Extension of the Ye and Shreeve group contribution method for density estimation of ionic liquids in a wide range of temperatures and pressures. Fluid Phase Equilib 263:26–32

    Article  CAS  Google Scholar 

  298. Shannon MS, Tedstone JM, Danielsen SPO, Hindman MS, Irvin AC, Bara JE (2012) Free volume as the basis of gas solubility and selectivity in imidazolium-based ionic liquids. Ind Eng Chem Res 51:5565–5576

    Article  CAS  Google Scholar 

  299. Tekin A, Safarov J, Shahverdiyev A, Hassel E (2007) (p,ρ,T) Properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluoro-phosphate at T = (298.15 to 398.15) K and pressures up to p = 40 MPa. J Mol Liq 136:177–182

    Article  CAS  Google Scholar 

  300. Jaquemin J, Husson P, Mayer V, Cibulka I (2007) High-pressure volumetric properties of imidazolium-based ionic liquids: effect of the anion. J Chem Eng Data 52:2204–2211

    Article  CAS  Google Scholar 

  301. Marcus Y (2013) The compressibility and surface tension product of molten salts. J Chem Phys 139:124509/1-5

    Article  CAS  Google Scholar 

  302. Marcus Y (2013) Internal pressure of liquids and solutions. Chem Rev 113:6536–6551

    Article  CAS  Google Scholar 

  303. Kayama Y, Ichikawa T, Ohno H (2014) Transparent colourless room temperature ionic liquids having high refractive index over 1.60. Chem Commun 50:14790–14792

    Article  CAS  Google Scholar 

  304. Pereiro AB, Santamaria F, Tojo E, Rodriguez A, Tojo J (2006) Temperature dependence of physical properties of ionic liquid 1,3-dimethylimidazolium methyl sulfate. J Chem Eng Data 51:952–954

    Article  CAS  Google Scholar 

  305. Gomez E, Gonzalez B, Calvar N, Tojo E, Dominguez A (2006) Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J Chem Eng Data 51:2096–2102

    Article  CAS  Google Scholar 

  306. Russina O, Gontrani L, Fazio B, Lombardo C, Triolo A, Caminiti R (2010) Selected chemical-physical properties and structural heterogeneities in 1-ethyl-3-methylimidazolium alkyl sulfate room temperature ionic liquids. Chem Phys Lett 493:259–262

    Article  CAS  Google Scholar 

  307. Shamsipur M, Beigi AAM, Teymouri M, Pourmortazavi SM, Irandousi M (2010) Physical electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoro-methanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imide. J Mol Liq 157:43–50

    Article  CAS  Google Scholar 

  308. Vakili-Nezhaad G, Vatani M, Asghari M, Ashour I (2012) Effect of temperature on the physical properties of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate anions, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate. J Chem Thermodyn 54:148–154

    Article  CAS  Google Scholar 

  309. Singh T, Kumar A, Kaur M, Kaur G, Kumar H (2009) Non-ideal behaviour of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K. J Chem Thermodyn 41:717–723

    Article  CAS  Google Scholar 

  310. Kim K-S, Shin B-K, Lee H (2004) Physical electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate. Korean J Chem Eng 21:1010–1014

    Article  CAS  Google Scholar 

  311. Wu T-Y, Chen B-K, Hao L, Lin K-F, Sun I-W (2011) Thermophysical properties of a room temperature ionic liquid (1-methyl-3-pentyl-imidazolium hexafluoro-phosphate) with poly(ethylene glycol). J Taiwan Inst Chem Eng 42:914–921

    Article  CAS  Google Scholar 

  312. Chen ZJ, Lee J-M (2014) Free volume model for the unexpected effect of c2-methylation on the properties of imidazolium ionic liquids. J Phys Chem B 118:2712–2718

    Article  CAS  Google Scholar 

  313. Yan X-J, Li S-N, Zhai Q-G, Jiang Y-C, Hu M-C (2014) Physicochemical properties for the binary systems of ionic liquids [Cnmim]Cl + N,N-dimethylformamide. J Chem Eng Data 59:1411–1422

    Article  CAS  Google Scholar 

  314. Lago S, Rodriguez H, Soto A, Arce A (2012) Alkylpyridinium alkylsulfate ionic liquids as solvents for the deterpenation of citrus essential oil. Sep Sci Technol 47:292–299

    Article  CAS  Google Scholar 

  315. Garcia-Mardones M, Martin S, Gascon I, Lafuente C, Schröder B et al (2014) Thermophysical properties of the binary mixture 1-propylpyridinium tetrafluoroborate with methanol. J Chem Eng Data 59:1564–1571

    Article  CAS  Google Scholar 

  316. Larriba M, Garcia S, Navarro P, Garcia J, Rodriguez F (2012) Physical properties of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoro-methylsulfonyl)imide binary ionic liquid mixtures. J Chem Eng Data 57:1318–1325

    Article  CAS  Google Scholar 

  317. Almeida HFD, Lopes-da-Silva JA, Freire MG, Coutinho JAP (2013) Surface tension and refractive index of pure and water-saturated tetradecyltrihexylphospho-nium-based ionic liquids. J Chem Thermodyn 57:372–379

    Article  CAS  Google Scholar 

  318. Huang M-M, Jiang Y, Sasisanker P, Driver GW, Weingärtner H (2011) Static relative dielectric permittivities of ionic liquids at 25°. J Chem Eng Data 56:1494–1499

    Article  CAS  Google Scholar 

  319. Hunger J, Stoppa A, Schrödle S, Hefter G, Buchner R (2009) Temperature dependence of the dielectric properties and dynamics of ionic liquids. ChemPhysChem 10:723–733

    Article  CAS  Google Scholar 

  320. Mizoshiri M, Nagao T, Mizoguchi Y, Yao M (2010) Dielectric permittivity of room temperature ionic liquids: a relation to the polar and nonpolar domain structures. J Chem Phys 132:164510/1-6

    Article  CAS  Google Scholar 

  321. Weingärtner H (2014) The static dielectric permittivity of ionic liquids. J Mol Liq 192:185–190

    Article  CAS  Google Scholar 

  322. Bandres I, Giner B, Artigas H, Royo FM, Lafuente C (2008) Thermophysic comparative study of two isomeric pyridinium-based ionic liquids. J Phys Chem B 112:3077–3084

    Article  CAS  Google Scholar 

  323. Bandres I, Giner B, Artigas H, Lafuente C, Royo FM (2009) Thermophysical properties of N-octyl-3-methylpyridinium tetrafluoroborate. J Chem Eng Data 54:236–240

    Article  CAS  Google Scholar 

  324. Rocha MAA, Ribeiro FMS, Ferreira AIMCL, Coutinho JAP, Santos LMNBF (2013) Thermophysical properties of [CN-1C1im|[PF6| ionic liquids. J Mol Liq 188:196–202

    Article  CAS  Google Scholar 

  325. Benito J, Garcia-Mardones M, Perez-Gregorio V, Gascon I, Lafuente C (2014) Physicochemical study of N-ethylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquid. J Solution Chem 43:696–710

    Article  CAS  Google Scholar 

  326. Seki S, Tsuzuki S, Hayamizu K, Serizawa N, Ono S, Takei K, Doi H, Umebayashi Y (2014) Static transport properties of alkyltrimethylammonium cation-based room-temperature ionic liquids. J Phys Chem B 118:4590–4599

    Article  CAS  Google Scholar 

  327. Bhattacharjee A, Lopes-da-Silva JA, Freire MG, Coutinho JAP, Carvalho PJ (2015) Thermophysical properties of phosphonium-based ionic liquids. Fluid Phase Equilib 400:103–113

    Article  CAS  Google Scholar 

  328. Montalban MG, Bolivar CL, Bnos FGD, Villora G (2015) Effect of temperature, anion, and alkyl chain length on the density and refractive index of 1-alkyl-3-methyl-imidazolium-based ionic liquids. J Chem Eng Data 60:1986–1996

    Article  CAS  Google Scholar 

  329. Ma X-X, Wei J, Zhang Q-B, Tian F, Feng Y-Y, Guan W (2013) Prediction of thermophysical properties of acetate-based ionic liquids using semiempirical methods. Ind Eng Chem Res 52:9490–9496

    Article  CAS  Google Scholar 

  330. Sattari M, Kamari A, Mohammadi AH, Ramjugernath D (2014) A group contribution method for estimating the refractive indices of ionic liquids. J Mol Liq 200:410–415

    Article  CAS  Google Scholar 

  331. Daguenet C, Dyson PJ, Krossing I, Oleinikova A, Slattery J, Wakai C, Weingärtner H (2006) Dielectric response of imidazolium-based room-temperature ionic liquids. J Phys Chem B 110:12682–12688

    Article  CAS  Google Scholar 

  332. Nakamura K, Shikata T (2010) Systematic dielectric and NMR study of the ionic liquid 1-alkyl-3-methyl imidazolium. ChemPhysChem 11:285–294

    Article  CAS  Google Scholar 

  333. McHale G, Hardacre C, Ge R, Doy N, Allen RWK, MacInnes M, Bown MR, Newton MI (2008) Density-viscosity product of small-volume ionic liquid samples using quartz crystal impedance analysis. Anal Chem 80:5806–5811

    Article  CAS  Google Scholar 

  334. Ghatee MH, Zare M, Moosavi F, Zolghadr AR (2010) Temperature-dependent density and viscosity of the ionic liquids 1-alkyl-3-methylimidazolium iodides: experiment and molecular dynamics simulation. J Chem Eng Data 55:3084–3088

    Article  CAS  Google Scholar 

  335. Costa AJL, Esperança JMSS, Marrucho IM, Rebelo LPN (2011) Densities viscosities of 1-ethyl-3-methylimidazolium n-alkyl sulfates. J Chem Eng Data 56:3433–3331

    Article  CAS  Google Scholar 

  336. Ciocirlan O, Croitoru O, Iulian O (2011) Densities viscosities for binary Mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with molecular solvents. J Chem Eng Data 56:1526–1534

    Article  CAS  Google Scholar 

  337. Quijada-Maldonado E, van der Boogaart S, Lijbers JH, Maindersma GW, de Haan AB (2012) Experimental densities, dynamic viscosities and surface tensions of the ionic liquids series 1-ethyl-3-methylimidazolium acetate and dicyanamide and their binary and ternary mixtures with water and ethanol at T = (298.15 to 343.15 K). J Chem Thermodyn 51:51–58

    Article  CAS  Google Scholar 

  338. McEwen AB, Ngo HL, LeCompte K, Goldman JI (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687–1695

    Article  CAS  Google Scholar 

  339. Kulkarni PS, Branco LC, Crespo JG, Nunes MC, Raymundo A, Afonso CAM (2007) Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem Eur J 13:8478–8488

    Article  CAS  Google Scholar 

  340. Li J-G, Hu Y-F, Sun S-F, Liu Y-S, Liu Z-C (2010) Densities and dynamic viscosities of the binary system (water + 1-hexyl-3-methylimidazolium bromide) at different temperatures. J Chem Thermodyn 42:904–908

    Article  CAS  Google Scholar 

  341. Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM (2011) Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J Chem Eng Data 56:31–34

    Article  CAS  Google Scholar 

  342. Domanska U, Krolikowska M (2012) Density viscosity of binary mixtures of thiocyanate ionic liquids + water as a function of temperature. J Solution Chem 41:1422–1445

    Article  CAS  Google Scholar 

  343. Gomez E, Calvar N, Macedo EA, Dominguez A (2012) Effect of the temperature on the physical properties of pure 1-propyl 3-methylimidazolium bis(trifluoro-methylsulfonyl)imide and characterization of its binary mixtures with alcohols. J Chem Thermodyn 45:9–15

    Article  CAS  Google Scholar 

  344. Rocha M, Neves CMSS, Freire MG, Russina O, Triolo A, Coutinho JAP, Santos LMNBF (2013) Alkylimidazolium based ionic liquids: impact of cation symmetry on their nanoscale structural organization. J Phys Chem B 117:10889–10897

    Article  CAS  Google Scholar 

  345. Song D, Chen J (2014) Density viscosity data for mixtures of ionic liquids with a common anion. J Chem Eng Data 59:257–262

    Article  CAS  Google Scholar 

  346. AlTuwaim MS, Alkhaldi KHAE, Al-Jimz AS, Mohammad AA (2014) Temperature dependence of physicochemical properties of imidazolium- pyridinium- and phosphonium-based ionic liquids. J Chem Eng Data 59:1955–1963

    Article  CAS  Google Scholar 

  347. Zhang Q-G, Wei Y, Sun S-S, Wang C, Yang M, Liu Q-S, Gao Y-A (2012) Study on thermodynamic properties of ionic liquid n-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide. J Chem Eng Data 57:2185–2190

    Article  CAS  Google Scholar 

  348. Oliveira FS, Freire MG, Carvalho PJ, Coutinho JAP, Canongia JN et al (2010) Structural and positional isomerism influence in the physical properties of pyridinium NTf2-based ionic liquids: pure and water-saturated mixtures. J Chem Eng Data 55:4514–4520

    Article  CAS  Google Scholar 

  349. Garcia-Mardones M, Gascon I, Lopez MC, Royo FM, Lafuente C (2012) Viscosimetric study of binary mixtures containing pyridinium-based ionic liquids and alkanols. J Chem Eng Data 57:3549–3556

    Article  CAS  Google Scholar 

  350. Gonzalez B, Calvar N, Gomez E, Dominguez I, Dominguez A (2009) Synthesis physical properties of 1-ethylpyridinium ethylsulfate and its binary mixtures with ethanol and 1-propanol at several temperatures. J Chem Eng Data 54:1353–1358

    Article  CAS  Google Scholar 

  351. Safarov J, Kul I, El-Awady WA, Nocke J, Shahverdiyev A, Hassel E (2012) Thermophysical properties of 1-butyl-4-methylpyridinium tetrafluoroborate. J Chem Thermodyn 51:82–87

    Article  CAS  Google Scholar 

  352. Tokuda H, Ishii K, Susan MABH, Tsuzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839

    Article  CAS  Google Scholar 

  353. Gonzalez EJ, Gonzalez B, Mecedo EA (2012) Thermophysical properties of the pure ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide and its binary mixtures with alcohols. J Chem Eng Data 58:1440–1448

    Article  CAS  Google Scholar 

  354. Huang X-J, Rogers EL, Hardacre C, Compton RG (2009) The reduction of oxygen in various room temperature ionic liquids in the temperature range 293–318 K: exploring the applicability of the Stokes-Einstein relationship in room temperature ionic liquids. J Phys Chem B 113:8953–8959

    Article  CAS  Google Scholar 

  355. Ferreira CE, Taslavera-Prieto NMC, Fonseca IMA, Portugal TC (2012) Measurements of pVT, viscosity, and surface tension of trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate ionic liquid and modelling with equations of state. J Chem Thermodyn 47:183–196

    Article  CAS  Google Scholar 

  356. Deive FJ, Rivas MA, Rodriguez A (2013) Study of thermodynamic and transport properties of phosphonium-based ionic liquids. J Chem Thermodyn 62:98–103

    Article  CAS  Google Scholar 

  357. Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107:6170–6178

    Article  CAS  Google Scholar 

  358. Ghatee MH, Zare M, Zolghadr AR, Moosavi F (2010) Temperature dependence of viscosity and relation with the surface tension of ionic liquids. Fluid Phase Equilib 291:188–194

    Article  CAS  Google Scholar 

  359. Hildebrand JH, Lamoreaux RH (1972) Fluidity. General theory. Proc Natl Acad Sci U S A 69:3428–3431

    Article  CAS  Google Scholar 

  360. Marcus Y (2014) The fluidity of room temperature ionic liquids. Fluid Phase Equilib 363:66–69

    Article  CAS  Google Scholar 

  361. Harris KR, Kanakubo M, Woolf LA (2006) Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluoro-phosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. J Chem Eng Data 51:1161–1167

    Article  CAS  Google Scholar 

  362. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluoro-phosphate and 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide. J Chem Eng Data 52:1080–1085

    Article  CAS  Google Scholar 

  363. Harris KR, Kanakubo M, Woolf LA (2007) Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate: viscosity and density relationships in ionic liquids. J Chem Eng Data 52:2425–2430

    Article  CAS  Google Scholar 

  364. Noda A, Hayamizu K, Watanabe M (2001) Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B 105:4603–4610

    Article  CAS  Google Scholar 

  365. Tsuzuki S, Shinoda W, Saito H, Mikami M, Tokuda H, Watanabe M (2009) Molecular dynamics simulations of ionic liquids: cation and anion dependence of self-diffusion coefficients of ions. J Phys Chem B 113:10641–10649

    Article  CAS  Google Scholar 

  366. Harris KR, Woolf LA, Kanakubo M, Rüther T (2011) Transport properties of N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. J Chem Eng Data 56:4672–4685

    Article  CAS  Google Scholar 

  367. Bidikoudi M, Zubeir LF, Falaras P (2014) Low viscosity highly conductive ionic liquid blends for redox active electrolytes in efficient dye-sensitized solar cells. J Mater Chem A 2:15326–15336

    Article  CAS  Google Scholar 

  368. McFarlane DR, Sun J, Golding J, Meakin P, Forsyth M (2000) High conductivity molten salts based on the imide ion. Electrochim Acta 45:1271–1278

    Article  CAS  Google Scholar 

  369. Vila J, Varela LM, Cabeza O (2007) Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochim Acta 52:7413–7417

    Article  CAS  Google Scholar 

  370. Ignat’ev NV, Welz-Biermann U, Kucheryna A, Bissky G, Willner H (2005) New ionic liquids with tris(perfluoroalkyl)trifluorophosphate (FAP) anions. J Fluor Chem 126:1150–1159

    Article  CAS  Google Scholar 

  371. Kanakubo M, Harris KR, Tsuchihashi N, Ibuki K, Ueno M (2007) Temperature and pressure dependence of the electrical conductivity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octyl-imidazolium tetrafluoroborate. Fluid Phase Equilib 261:414–420

    Article  CAS  Google Scholar 

  372. Stoppa A, Hunger J, Buchner R (2009) Conductivities of binary mixtures of ionic liquids with polar solvents. J Chem Eng Data 54:472–479

    Article  CAS  Google Scholar 

  373. Schreiner C, Zugmann S, Harti R, Gores HJ (2010) Fractional Walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot. J Chem Eng Data 55:1784–1788

    Article  CAS  Google Scholar 

  374. Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2004) Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B 108:16593–16600

    Article  CAS  Google Scholar 

  375. Wu T-Y, Hao L, Chen P-R, Liao J-W (2013) Ionic conductivity and transporting properties in LiTFSI-doped bis(trifluoromethanesulfonyl)imide-based ionic liquid electrolyte. Int J Electrochem Sci 8:2606–2624

    CAS  Google Scholar 

  376. G-h S, K-x L, Sun C-g (2006) Application of 1-ethyl-3-methylimidazolium thiocyanate to the electrolyte of electrochemical double layer capacitors. J Power Sources 162:1444–1450

    Article  CAS  Google Scholar 

  377. Simons TJ, Bayley PM, Zhang Z, Howlett PC, MacFarlane DR, Madsen LA, Forsyth M (2014) Influence of Zn2+ and water on the transport properties of a pyrrolidinium dicyanamide ionic liquid. J Phys Chem B 118:4895–4905

    Article  CAS  Google Scholar 

  378. Ning H, Hou M-Q, Mei Q-Q, Liu Y-H, Yang D-Z, Han B-X (2013) The physicochemical properties of some imidazolium-based ionic liquids and their binary mixtures. Sci China Chem 55:1509–1518

    Article  CAS  Google Scholar 

  379. Calado MS, Diogo, JCF, Correia da Mata JL, Caetano FJP, Visak ZP, Fareleira JMNA (2013) Electrolytic conductivity of four imidazolium-based ionic liquids. Int J Thermophys 34:1265–1279

    Google Scholar 

  380. Wang X, Chi Y, Mu T (2014) A review on the transport properties of ionic liquids. J Mol Liq 193:262–266

    Article  CAS  Google Scholar 

  381. Nishida T, Tashiro Y, Yamamoto M (2003) Physical electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J Fluor Chem 120:135–141

    Article  CAS  Google Scholar 

  382. Sun J, Forsyth M, MacFarlane DR (1998) Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B 102:8858–8864

    Article  CAS  Google Scholar 

  383. Garcia-Mardones M, Osorio HM, Lafuente C, Gascon I (2012) Ionic conductivities of binary mixtures containing pyridinium-based ionic liquids and alkanols. J Chem Eng Data 58:1613–1620

    Article  CAS  Google Scholar 

  384. Li J-G, Hu Y-F, Ling S, Zhang J-Z (2011) Physicochemical properties of [C6mim]PF6] and [C6mim]C2F5)3PF3] ionic liquids. J Chem Eng Data 56:3068–3072

    Article  CAS  Google Scholar 

  385. Zech O, Stoppa A, Buchner R, Kunz W (2010) The Conductivity of imidazolium-based ionic liquids from (248 to 468) K. B. Variation of the anion. J Chem Eng Data 55:1774–1778

    Article  CAS  Google Scholar 

  386. Hayamizu K, Tsuzuki S, Seki S, Fujii K, Suenaga M, Umebayashi Y (2010) Studies on the translational and rotational motions of ionic liquids composed of N-methyl-N-propyl-pyrrolidinium (P13) cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts. J Chem Phys 133:194505/1-13

    Article  CAS  Google Scholar 

  387. Borodin O (2009) Polarizable force field development and molecular dynamics simulations of ionic liquids. J Phys Chem B 113:11463–11478

    Article  CAS  Google Scholar 

  388. Mondal A, Balasubramanian S (2014) A molecular dynamics study of collective transport properties of imidazolium-based room-temperature ionic liquids. J Chem Eng Data 59:3061–3068

    Article  CAS  Google Scholar 

  389. Kanakubo M, Harris KR, Tsuchihashi N, Ibuki K, Ueno M (2015) Temperature and pressure dependence of the Electrica conductivity of 1-Butyl-3-methylimid-azolium Bis(trifluoromethanesulfonyl)amide (trifluoromethanesulfonyl)amide. J Chem Eng Data 60:1495–1503

    Article  CAS  Google Scholar 

  390. Kanakubo M, Harris KR, Tsuchihashi N, Ibuki K, Ueno M (2007) Effect of pressure on transport properties of the ionic liquid 1-butyl-3-methylimidazolium hexafluoro-phosphate. J Phys Chem B 111:2062–2069

    Article  CAS  Google Scholar 

  391. Lopez ER, Pensado AS, Comunas MJP, Padua AAH, Fernandez J, Harris KR (2011) Density scaling of the transport properties of molecular and ionic liquids. J Chem Phys 134:144507/1-12

    Google Scholar 

  392. Stoppa A, Zech O, Kunz W, Buchner R (2010) The conductivity of imidazolium-based ionic liquids from (−35° to 195)C. A. Variation of cation’s alkyl chain. J Chem Eng Data 55:1768–1773

    Article  CAS  Google Scholar 

  393. Van Valkenburg ME, Vaughn RL, Williams M, Wilkes JS (2005) Thermochemistry of ionic liquid heat-transfer fluids. Thermochem Acta 425:181–188

    Article  CAS  Google Scholar 

  394. Ge R, Hardacre C, Nancarrow P, Rooney DW (2007) Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. J Chem Eng Data 52:1819–1823

    Article  CAS  Google Scholar 

  395. Tomida D, Kenmochi S, Tsukada T, Qiao K, Yokoyama C (2007) Thermal conductivities of [bmim]PF6] [hmim]PF6] and [omim]PF6] from 294 to 335 K at pressures up to 20 MPa. Int J Thermophys 28:1147–1160

    Article  CAS  Google Scholar 

  396. Tomida D, Kenmochi S, Tsukada T, Qiao K, Bao Q, Yokoyama C (2012) Viscosity thermal conductivity of 1-hexyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium tetrafluoroborate at pressures up to 20 MPa. Int J Thermophys 33:959–969

    Article  CAS  Google Scholar 

  397. Tomida D, Kenmochi S, Qiao K, Tsukada T, Yokoyama C (2013) Densities and thermal conductivities of N-alkylpyridinium tetrafluoroborates at high pressure. Fluid Phase Equilib 340:31–35

    Article  CAS  Google Scholar 

  398. Liu H, Magino E, Visser AV, Bridges NJ, Fox EB (2012) Thermal and transport properties of six ionic liquids: an experimental and molecular dynamics study. Ind Eng Chem Res 51:7242–7254

    Article  CAS  Google Scholar 

  399. Frez C, Diebold GJ, Tran CD, Yu S (2006) Determination of thermal diffusivities, thermal conductivities, and sound speeds of room-temperature ionic liquids by the transient grating technique. J Chem Eng Data 51:1250–1255

    Article  CAS  Google Scholar 

  400. Fröba AP, Rausch MH, Krzeminski K, Assenbaum D, Wasserscheid P, Leipertz A (2010) Thermal conductivity of ionic liquids: measurement and prediction. Int J Thermophys 31:2059–2077

    Article  CAS  Google Scholar 

  401. Nieto de Castro CA, Lourenço MJV, Ribeiro APC, Langa E, Vieira SIC (2010) Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data 55:653–661

    Article  CAS  Google Scholar 

  402. Nieto de Castro CA, Murshed SMS, Lourenço MJV, Santos FJV, Lopes MLM, França JMP (2012) Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids. Int J Therm Sci 62:34–39

    Article  CAS  Google Scholar 

  403. Bhatt VD, Gohil K (2013) Ion exchange synthesis and thermal characteristics of some [N + 222]-based ionic liquids. Bull Mater Sci 36:1121–1125

    Article  CAS  Google Scholar 

  404. Kozlov DN, Kiefer J, Seeger T, Fröba AP, Leipertz A (2014) Simultaneous measurement of speed of sound, thermal diffusivity, and bulk viscosity of 1-ethyl-3-methylimidazolium-based ionic liquids using laser-induced gratings. J Phys Chem B 118:14493–14501

    Article  CAS  Google Scholar 

  405. Tenney CM, Massel M, Mayer JM, Sen M, Brennecke JF, Maginn EJ (2014) A computational and experimental study of the heat transfer properties of nine different ionic liquids. J Chem Eng Data 59:391–399

    Article  CAS  Google Scholar 

  406. Shojaee SA, Farzam S, Hezave AZ, Lashkarbolooki M, Ayatollahi S (2013) A new correlation for estimating thermal conductivity of pure ionic liquids. Fluid Phase Equilib 354:199–206

    Article  CAS  Google Scholar 

  407. Wu K-J, Chen Q-L, He C-H (2014) Speed of sound of ionic liquids: database, estimation, and its application for thermal conductivity prediction. AIChE J 60:1120–1131

    Article  CAS  Google Scholar 

  408. Wu K-J, Zhao C-X, He C-H (2013) Development of a group contribution method for determination ofthermal concuctivitry of ionic liquids. Fluid Phase Equilib 339:10–14

    Article  CAS  Google Scholar 

  409. Reichardt C (2002) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  410. Jessop PG, Jessop DA, Fu D, Phan L (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14:1245–1259

    Article  CAS  Google Scholar 

  411. Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem Soc Rev 22:409–416

    Article  CAS  Google Scholar 

  412. Catalan J (2009) Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J Phys Chem B 113:5951–5960

    Article  CAS  Google Scholar 

  413. Schade A, Behme N, Spange S (2014) Dipolarity versus polarizability and acidity versus basicity of ionic liquids as a function of their molecular structures. Chem Eur J 20:2232–2243

    Article  CAS  Google Scholar 

  414. Kochly ED, Citrak S, Gathondu N, Amberchan G (2014) Effect of ionic liquids in unimolecular solvolysis reactions involving carbocationic intermediates. Tetrahedron Lett 55:7181–7185

    Article  CAS  Google Scholar 

  415. Moita M-LCJ, Santos AFS, Silva JFCC, Lampreia IMS (2012) Polarity of some [NR1R2R3R4]Tf2N] ionic liquids in ethanol: preferential solvation versus solvent-solvent interactions. J Chem Eng Data 57:2702–2709

    Article  CAS  Google Scholar 

  416. Spange S, Lungwitz R, Schade A (2014) Correlation of molecular structure and polarity of ionic liquids. J Mol Liq 192:137–143

    Article  CAS  Google Scholar 

  417. Schneider H, Migron Y, Marcus Y (1992) Hydrogen-bond donation properties of aqueous solvent mixtures from carbon-13 NMR data of dialkylbenzamides. Z Phys Chem 175:145–164

    CAS  Google Scholar 

  418. Schneider H, Badrieh Y, Migron Y, Marcus Y (1992) Hydrogen bond donation properties of organic solvents and their aqueous mixtures from carbon-13 NMR data of pyridine-N-oxide. Z Phys Chem 177:143–156

    Article  CAS  Google Scholar 

  419. Seddon KR, Stark A, Torres M-J (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287

    Article  CAS  Google Scholar 

  420. Chapeaux A, Simini LD, Stadtherr MA, Brennecke J (2007) Liquid phase behavior of ionic liquids with water and 1-octanol and modeling of 1-octanolwater partition coefficients. J Chem Eng Data 52:2462–2467

    Article  CAS  Google Scholar 

  421. Cho C-W, Preiss U, Jungnickel C, Stolte S, Arning J, Ranke J, Klamt A, Krossing I, Thoming J (2011) Ionic liquids: predictions of physicochemical properties with experimental andor DFT-calculated LFER parameters to understand molecular interactions in solution. J Phys Chem B 115:6040–6050

    Article  CAS  Google Scholar 

  422. Bonhote P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  423. Anthony JL, Maginn EJ, Brennecke JF (2001) Solution thermodynamics of imidazolium-based ionic liquids and water. J Phys Chem B 105:10942–10949

    Article  CAS  Google Scholar 

  424. Chun S, Dzyuba SV, Bartsch RA (2004) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741

    Article  CAS  Google Scholar 

  425. Wong DSH, Chen JP, Chang JM, Chou CH (2002) Phase equilibria of water and ionic liquids [emim]PF6] and [bmim]PF6]. Fluid Phase Equilib 194–197:1089–1095

    Article  Google Scholar 

  426. Luo H, Dai S, Bonnesen PV (2004) Solvent extraction of Sr2+ and Cs + based on room-temperature ionic liquids containing monoaza-substituted crown ethers. Anal Chem 76:2773–2779

    Article  CAS  Google Scholar 

  427. Shimojo K, Goto M (2004) Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Anal Chem 76:5039–5044

    Article  CAS  Google Scholar 

  428. McFarlane J, Ridenour WB, Luo H, Hunt RD, DePaoli DW, Ren EX (2005) Room temperature ionic liquids for separating organics from produced water. Sep Sci Technol 40:1245–1265

    Article  CAS  Google Scholar 

  429. Chen P-Y (2007) The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition. Electrochim Acta 52:5484–5492

    Article  CAS  Google Scholar 

  430. Freire MG, Neves CMSS, Carvalho PJ, Gardas RL, Fernandes AM, Marrucho IM, Santos LMNBF, Coutinho JAP (2007) Mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 111:13082–13089

    Article  CAS  Google Scholar 

  431. Salminen J, Papaiconomou N, Kumar RA, Lee J-M, Kerr J, Newman J, Prausnitz JM (2007) Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilib 261:421–426

    Article  CAS  Google Scholar 

  432. Deng Y, Besse-Hogan P, Husson P, Sancelme M, Delort A-M, Stepnowski P, Paszkiewicz M, Gołebiowski M, Gomes MFC (2012) Relevant parameters for assessing the environmental impact of some pyridinium, ammonium and pyrrolidinium based ionic liquids. Chemosphere 89:327–333

    Article  CAS  Google Scholar 

  433. Gonzalez EJ, Dominguez A, Macedo EA (2012) physical and excess properties of eight binary mixtures containing water and ionic liquids. J Chem Eng Data 57:2165–2176

    Article  CAS  Google Scholar 

  434. Gonzalez EJ, Macedo EA (2014) Influence of the number, position and length of the alkyl-substituents on the solubility of water in pyridinium-based ionic liquids. Fluid Phase Equilib 383:72–77

    Article  CAS  Google Scholar 

  435. Kaar JL, Jesionowski AM, Berberich JA, Moulton R, Russell AJ (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125:4125–4131

    Article  CAS  Google Scholar 

  436. Lee SH, Lee SB (2009) Octanol/water partition coefficients of ionic liquids. J Chem Technol Biotechnol 84:202–207

    Article  CAS  Google Scholar 

  437. Ropel L, Belveze L, Aki SNVK, Stadtherr MA, Brennecke JF (2005) Octanol-water partition coefficients of imidazolium-based ionic liquids. Green Chem 7:83–90

    Article  CAS  Google Scholar 

  438. Lee B-S, Lin S-T (2014) A priori prediction of the octanol-water partition coefficient (KOW) of ionic liquids. Fluid Phase Equilib 363:233–238

    Article  CAS  Google Scholar 

  439. Zhao H, Baker GA, Song Z, Olubajo C, Zanders L, Campbell SM (2009) Effect of ionic liquid properties on lipase stabilization under microwave irradiation. J Mol Catal B Enzym 57:149–157

    Article  CAS  Google Scholar 

  440. Deng Y, Besse-Hogan P, Sancelme M, Delort A-M, Husson P, Costa Gomes MF (2011) Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids. J Hazard Mater 198:165–178

    Article  CAS  Google Scholar 

  441. Hassan S, Duclaux L, Leveque J-M, Reinert L, Farooq A, Yasin T (2014) Effect of cation type, alkyl chain length, adsorbate size on adsorption kinetics and isotherms of bromide ionic liquids from aqueous solutions onto microporous fabric and granulated activated carbons. J Environ Manag 144:108–117

    Article  CAS  Google Scholar 

  442. Domanska U, Bogel-Lukasik E, Bogel-Lukasik R (2003) 1-Octanol/water partition coefficients of 1-alkyl-3-methylimidazolium chloride. Chem Eur J 9:3033–3041

    Article  CAS  Google Scholar 

  443. Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741

    Article  CAS  Google Scholar 

  444. Rickert PG, Stepinski DC, Rausch DJ, Bergeron RM, Jakab S, Dietz ML (2007) Solute-induced dissolution of hydrophobic ionic liquids in water. Talanta 72:315–320

    Article  CAS  Google Scholar 

  445. Kolarik Z (2013) Ionic liquids: how far do they extend the potential of solvent extraction of f-elements? Ion Exch Solvent Extract 31:24–60

    Article  CAS  Google Scholar 

  446. Padro JM, Ponzinibbio A, Agudelo Mesa LB, Reta M (2011) Predicting the partitioning of biological compounds between room-temperature ionic liquids and water by means of the solvation-parameter model. Anal Bioanal Chem 399:2807–2820

    Article  CAS  Google Scholar 

  447. Galan-Sanchez, M (2008) Functionalised ionic liquids, absorption solvents for CO2 and olefin separation. Ph. D. thesis

    Google Scholar 

  448. Torralba-Calleja E, Skinner J, Dutierrez-Tauste D (2013) CO2 capture in ionic liquids: a review of solubilities and experimental methods. J Chem 473584:1–16

    Article  CAS  Google Scholar 

  449. Yokozeki A, Shiflett MB, Junk CLM, Foo T (2008) Physical chemical absorptions of carbon dioxide in room-temperature ionic liquids. J Phys Chem B 112:16654–16663

    Article  CAS  Google Scholar 

  450. Zhang X, Liu Z, Wang W (2008) Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AIChE J 54:2717–2027

    Article  CAS  Google Scholar 

  451. Karadas F, Atilhan M, Aparicio S (2010) Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 24:5817–5828

    Article  CAS  Google Scholar 

  452. Baltus RE, Culbertson BH, Dai S, Luo H, DePaoli DW (2004) Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. J Phys Chem B 108:721–727

    Article  CAS  Google Scholar 

  453. Carvalho PJ, Alvarez VH, Marrucho IM, Aznar M, Coutinho JAP (2010) High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. J Supercrit Fluids 52:258–265

    Article  CAS  Google Scholar 

  454. Zhang S, Chen Y, Ren RX-F, Zhang Y, Zhang J, Zhang X (2005) Solubility of CO2 in sulfonate ionic liquids at high pressure. J Chem Eng Data 50:230–233

    Article  CAS  Google Scholar 

  455. Soriano AN, Doma BT Jr, Li M-H (2009) Carbon dioxide solubility in some ionic liquids at moderate pressures. J Taiwan Inst Chem Eng 40:387–393

    Article  CAS  Google Scholar 

  456. Jalili AH, Mehdizadeh A, Shokouhi M, Ahmadi AN, Hosseine-Jenab M, Fateminassab F (2010) Solubility diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J Chem Thermodyn 42:1298–1303

    Article  CAS  Google Scholar 

  457. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126:5300–5308

    Article  CAS  Google Scholar 

  458. Blanchard LA, Gu Z, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105:2437–2444

    Article  CAS  Google Scholar 

  459. Mejia I, Stanley K, Canales R, Brennecke JF (2013) On the high-pressure solubilities of carbon dioxide in several ionic liquids. J Chem Eng Data 58:2642–2653

    Article  CAS  Google Scholar 

  460. Kim YS, Choi WT, Jang JH, Yoo K-P, Lee CS (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib 228–229:439–445

    Article  CAS  Google Scholar 

  461. Shin E-K, Lee R-C (2008) High-pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J Chem Eng Data 53:2728–2734

    Article  CAS  Google Scholar 

  462. Huang J, Rüther T (2009) Why are ionic liquids attractive for CO2 absorption? An overview. Aust J Chem 62:298–308

    Article  CAS  Google Scholar 

  463. Wang C, Luo X, Zhu X, Cui G, Jiang D, Deng D, Li H, Dai S (2013) The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Adv 3:15518–15527

    Article  CAS  Google Scholar 

  464. Seo S, DeSilva MA, Brennecke JF (2014) Physical properties and CO2 reaction pathway of 1-ethyl-3-methylimidazolium ionic liquids with aprotic heterocyclic anions. J Phys Chem B 118:14870–14879

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marcus, Y. (2016). Room Temperature Ionic Liquids. In: Ionic Liquid Properties. Springer, Cham. https://doi.org/10.1007/978-3-319-30313-0_6

Download citation

Publish with us

Policies and ethics