Skip to main content

Network Forming Ionic Liquids

  • Chapter
  • First Online:
  • 1640 Accesses

Abstract

Some salts, e.g., BeF2, ZnCl2, B2O3, SiO2, and GeO2, form glasses when sufficiently cooled. The glasses themselves are outside the scope of this book, but their properties as isotropic liquids are dealt with. Other high-melting salts (borates and silicates) are slags, and their properties as homogeneous liquids are dealt with here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Angell CA (1966) The importance of the metastable liquid state and glass transition phenomenon to transport and structure studies in ionic liquids. I. Transport properties. J Phys Chem 70:2793–2803

    Article  CAS  Google Scholar 

  2. Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer, Berlin

    Google Scholar 

  3. Baldwin CM, Mackenzie JD (1979) Preparation and properties of water-free vitreous beryllium fluoride. J Non-Cryst Solids 31:441–445

    Article  CAS  Google Scholar 

  4. Kartini E, Collins MF, Mezei F, Svensson EC (1998) Neutron scattering studies of glassy and liquid ZnCl2. Physica B 241:909–911

    Google Scholar 

  5. Ozhovan MI (2006) Topological characteristics of bonds in SiO2 and GeO2 oxide systems upon a glass-liquid transition. J Exp Theor Phys 103:819–829

    Article  CAS  Google Scholar 

  6. Cantor S, Ward WT, Moynihan CT (1969) Viscosity density in molten beryllium fluoride-lithium fluoride. J Chem Phys 50:2874–2879

    Article  CAS  Google Scholar 

  7. Janz GJ, Lakshminarayanan GR, Tomkins RPT, Wong J (1969) Molten salts. II. Surface tension data. Nat Stand Ref Data Ser NBS 28:49–111

    Google Scholar 

  8. Macedo PB, Capps W, Litovitz TA (1966) Two-state model for the free volume of vitreous B2O3. J Chem Phys 44:3357–3363

    Article  CAS  Google Scholar 

  9. Kingery WD (1959) Surface tension of some liquid oxides and their temperature coefficients. J Am Ceram Soc 42:6–10

    Article  CAS  Google Scholar 

  10. Dingwell DB, Knoche R, Webb SL (1993) A volume-temperature relationship for liquid GeO2 and some geophysically relevant derived parameters for network liquids. Phys Chem Miner 19:445–453

    Article  CAS  Google Scholar 

  11. Urbain G, Bottinga Y, Richet P (1982) Viscosity of liquid silica, silcates, and aluminosilicates. Geochim Cosmochim Acta 46:1061–1072

    Article  CAS  Google Scholar 

  12. Napolitano A, Macedo PB, Hawkins EG (1965) Viscosity density of borontrioxide. J Am Ceram Soc 48:613–616

    Article  CAS  Google Scholar 

  13. Bockris JO’M, Pilla A, Barton AL (1962) Densities of solid salts at elevated temperatures and molar-volume change on fusion. Rev Chim Rep Pop Roum 7:59–77

    CAS  Google Scholar 

  14. Sipp A, Bottinga Y, Richet P (2001) New high viscosity data for 3D network liquids and new correlations between old parameters. J Non-Cryst Solids 288:166–174

    Article  CAS  Google Scholar 

  15. Kim KB, Sadoway DR (1992) Electrical conductivity measurements of molten alkaline-earth fluorides. J Electrochem Soc 139:1027–1033 (the entry is 10–6 A Λ)

    Article  CAS  Google Scholar 

  16. Ghiorso MS, Kress VC (2004) An equation of state for silicate melts. II. Calibration of volumetric properties at 105 Pa. Am J Sci 304:679–751

    Article  CAS  Google Scholar 

  17. Bockris JO’M, Richards SR, Nanis L (1965) Self-diffusion and structure in molten Group II chlorides. J Phys Chem 69:1627–1637

    Article  CAS  Google Scholar 

  18. Shartsis L, Capps W (1952) Surface tension of molten alkali borates. J Am Ceram Soc 35:169–172

    Article  CAS  Google Scholar 

  19. Panish M (1959) The electrical conductivity of molten silica. J Phys Chem 63:1337–1338

    Article  CAS  Google Scholar 

  20. Mackenzie JD (1956) Viscosity, molar volume, and electric conductivity of liquid boron trioxide. Trans Faraday Soc 52:1564–1568

    Article  CAS  Google Scholar 

  21. Schick HL (1960) A thermodynamic analysis of the high-temperature vaporization properties of silica. Chem Rev 60:331–362

    Article  CAS  Google Scholar 

  22. Neuefeind J, Tödheide K, Lenke A, Bertagnolli H (1998) The structure of molten ZnCl2. J Non-Cryst Solids 224:205–215

    Article  CAS  Google Scholar 

  23. Heusel G, Bertagnolli H, Neuefeind J (2006) X-ray diffraction studies on molten zinc bromide at high pressure. J Non-Cryst Solids 352:3210–3216

    Article  CAS  Google Scholar 

  24. Zeidler A, Chirawatkul P, Salmon PS, Usuki T, Kohara S, Fischer H, Howells WS (2014) Structure of the network glass-former ZnCl2: From the boiling point to the glass. J Non-Cryst Solids 407:235–245

    Article  Google Scholar 

  25. Allen DA, Howe RA, Wood ND, Howells WS (1991) Tetrahedral coordination of zinc ions in molten zinc halides. J Chem Phys 94:5071–5076

    Article  CAS  Google Scholar 

  26. Neuefeind J (2001) On the partial structure factors of molten zinc chloride. Phys Chem Chem Phys 3:3987–3993

    Article  CAS  Google Scholar 

  27. Soper AK (2004) The structure of molten ZnCl2: a new analysis of some old data. Pramana 63:41–50

    Article  CAS  Google Scholar 

  28. Li H, Lu K, Wu Z, Dong J (1994) EXAFS studies of molten ZnCl2, RbCl and Rb2ZnCl4. J Phys Condens Matter 6:3629–3640

    Article  Google Scholar 

  29. Okamoto Y, Fukushima K, Iwadate Y (2002) XAFS study of molten zinc dibromide. J Non-Cryst Solids 312–314:450–453

    Article  Google Scholar 

  30. Yannopoulos SN, Kalanpounias AG, Crissanthopoulos A, Papatheodorou GN (2003) Temperature induced changes on the structure and the dynamics of the “tetrahedral” glasses and melts of ZnCl2 and ZnBr2. J Chem Phys 118:3197–3214

    Article  CAS  Google Scholar 

  31. Kalanpounias AG, Yannopoulos SN, Papatheodorou GN (2006) Temperature-induced structural changes in glassy, supercooled, and molten silica from 77 to 2150 K. J Chem Phys 124:014504, 1–15

    Article  Google Scholar 

  32. Wilson M, Madden PA (1994) Polarization effects on the structures and dynamics of ionic melts. J Phys Condens Matter 6:A151–A155

    Article  CAS  Google Scholar 

  33. Heaton RJ, Brookes R, Madden PA, Salanne M, Simon C, Turq P (2006) A first-principles description of liquid BeF2 and its mixtures with LiF: 1. Potential development and pure BeF2. J Phys Chem B 110:11454–11460

    Article  CAS  Google Scholar 

  34. Hawlitzky H, Horbach J, Spas S, Krack M, Binder K (2008) Comparative classical and ‘ab initio’ molecular dynamics study of molten and glassy germanium dioxide. J Phys Condens Matter 20:285106, 1–15

    Article  Google Scholar 

  35. Bassen A, Lemke A, Bertagnolli H (2000) Monte Carlo and reverse Monte Carlo simulations on molten zinc chloride. Phys Chem Chem Phys 2:1445–1454

    Article  CAS  Google Scholar 

  36. Vashishta P, Kalia RK, Rino JP (1990) Interaction potential for silica: a molecular-dynamics study of structural correlations. Phys Rev B 41:12197–12209

    Article  CAS  Google Scholar 

  37. Miyake M, Suzuki T (1984) Structural analysis of molten boron oxide (B2O3). J Chem Soc Faraday Trans 1(80):1925–1931

    Article  Google Scholar 

  38. Misawa M (1990) Structure of vitreous and molten boron oxide (B2O3) measured by pulsed neutron total scattering. J Non-Cryst Solids 122:33–40

    Article  CAS  Google Scholar 

  39. Sakowski J, Herms GJ (2001) The structure of vitreous and molten B2O3. J Non-Cryst Solids 293–295:304–311

    Article  Google Scholar 

  40. Voron’ko YK, Sobol AA, Shukshin VE (2012) Study of a structure of boron-oxygen complexes in the molten and vapor states by Raman and luminescence spectroscopies. J Mol Struct 1008:69–76

    Article  Google Scholar 

  41. Mackenzie JD (1961) Viscosity-temperature relation for network liquids. J Am Ceram Soc 44:598–601

    Article  CAS  Google Scholar 

  42. Moynihan CT, Cantor S (1968) Viscosity and its temperature dependence in molten beryllium fluoride. J Chem Phys 48:115–119

    Article  CAS  Google Scholar 

  43. Easteal AJ, Angell CA (1972) Viscosity of molten zinc chloride and supercritical behavior in its binary solutions. J Chem Phys 56:4231–4234

    Article  CAS  Google Scholar 

  44. Šušić M, Mentus S (1975) Viscosity and structure of molten zinc chloride and zinc bromide. J Chem Phys 62:744–745

    Article  Google Scholar 

  45. Kracek FC (1932) The ternary system: K2SiO3-Na2SiO3-SiO2. J Phys Chem 36:2529–2542

    Article  CAS  Google Scholar 

  46. Adams LH, Cohen LH (1966) Enthalpy changes as determined from fusion curves in binary systems. Am J Sci 264:543–561

    Article  CAS  Google Scholar 

  47. Jaeger FM, Van Klooster HS (1916) Investigations in the field of silicate chemistry. IV. Some data on the meta- and orthosilicates of the bivalent metals: beryllium, magnesium, calcium, strontium, barium, zinc, cadmium and manganese. Proc Kon Ned Akad Wet 18:896–913

    CAS  Google Scholar 

  48. Bockris JO’M, Tomlinson JW, White JL (1956) Structure of the liquid silicates: partial molar volumes and expansivities. Trans Faraday Soc 52:299–310

    Article  CAS  Google Scholar 

  49. Huntelaar ME, Cordfunke EHP, Scheele A (1993) Phase relations in the strontium oxide-silica-zirconium dioxide system I. The system SrO-SiO2. J Alloys Comp 19:187–190

    Google Scholar 

  50. Matsui M (1996) Molecular dynamics simulation of structures, bulk moduli, and volume thermal expansivities of silicate liquids in the system CaO-MgO-Al2O3-SiO2. Geophys Res Lett 23:395–398

    Article  CAS  Google Scholar 

  51. Anzai Y, Terashima K, Kimura S (1993) Physical properties of molten lithium tetraborate. J Cryst Growth 134:235–239

    Article  CAS  Google Scholar 

  52. Slough W, Jones GP (1974) Compilation of thermodynamic data for borate systems. Natl Phys Lab Rep Chem Phys Lab Rep Chem 12:1–20

    Google Scholar 

  53. Volarowich MP, Leont’ewa AA (1935) The determination of the specific volumes of melts at temperatures up to 1400°. Z Anorg Allg Chem 225:327–332

    Article  Google Scholar 

  54. Volarovich MP (1934) Investigation of the viscosity of the binary system sodium tetraborate-monosodium phosphate in the fused state. J Soc Glas Technol 18:201–208

    CAS  Google Scholar 

  55. Bockris JO’M, Kojonen E (1960) The compressibilities of certain molten alkali silicates and borates. J Am Chem Soc 82:4493–4497

    Article  CAS  Google Scholar 

  56. Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from partial molar volumes of oxide components. Am J Sci 269:169–182

    Article  CAS  Google Scholar 

  57. Richet P (1984) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta 48:471–483

    Article  CAS  Google Scholar 

  58. Aune RE, Hayashi M, Sridhar S (2005) Thermodynamic approach to physical properties of silicate melts. Ironmak Steelmak 32:141–150

    Article  CAS  Google Scholar 

  59. Riebling EF (1967) Volume relations in sodium oxide-boron oxide and sodium oxide-silicon dioxide-boron oxide melts at 1300°. J Am Ceram Soc 50:46–53

    Article  CAS  Google Scholar 

  60. Rivers ML, Carmichael ISE (1987) Ultrasonic studies of silicate melts. J Geophys Res 92:9247–9270

    Article  CAS  Google Scholar 

  61. Ejima A, Shimoji M (1970) Effect of alkali and alkaline-earth fluorides on surface tension of molten calcium silicates. Trans Faraday Soc 66:99–106

    Article  CAS  Google Scholar 

  62. Gier EJ, Carmichael ISE (1996) Thermal conductivity of molten Na2SiO3 and CaNa4Si3O9. Geochim Cosmochim Acta 60:355–357

    Article  CAS  Google Scholar 

  63. Ben Martin G, Spera SP, Ghiorso MS, Nevins D (2009) Structure, thermodynamic, and transport properties of molten Mg2SiO4: molecular dynamics simulations and model EOS. Am Mineral 94:693–703

    Article  CAS  Google Scholar 

  64. Jackson WE, Mustre de Leon J, Brown GE Jr, Waychunas GA, Conradson SD, Combes J-M (1993) High-temperature XAS study of ferrous silicate liquid: reduced coordination of ferrous iron. Science 262:229–233

    Article  CAS  Google Scholar 

  65. Majerus O, Cormier L, Calas G, Beuneu B (2003) Structural modifications between lithium-diborate glasses and melts: implications for transport properties and melt fragility. J Phys Chem B 107:13044–13040

    Article  CAS  Google Scholar 

  66. Skinner LB, Benmore CJ, Weber JKP, Tumber S, Lazareva L, Neuefeind J, Santodonato L, Du J, Parise JB (2012) Structure of molten CaSiO3: neutron diffraction isotope substitution with aerodynamic levitation and molecular dynamics study. J Phys Chem B 116:13439–13447

    Article  CAS  Google Scholar 

  67. Umesaki N, Ohno H, Igarashi K, Furukawa K (1992) A computer simulation study of the structural similarities between [alkali metal] fluoroberyllate and alkaline earth silicate melts. J Non-Cryst Solids 150:302–306

    Article  CAS  Google Scholar 

  68. Flood H, Förland T (1947) The acidic and basic properties of oxides. Acta Chem Scand 1:592–604; (1947) The acidic and basic properties of oxides. III. Relative acid-base strengths of some polyacids. Acta Chem Scand 1:790–798

    Google Scholar 

  69. Dron R (1982) Acid-base reactions in molten silicates. J Non-Cryst Solids 53:267–278

    Article  CAS  Google Scholar 

  70. Konakov VG (2011) From the pH scale to the pO scale. The problem of the determination of the oxygen ion O2- activity in oxide melts. J Solid State Electrochem 15:77–86

    Article  CAS  Google Scholar 

  71. Kubaschewski O, Alcock CB, Spencer PJ (1993) Materials thermochemistry, 6th edn. Pergamon Press, Oxford, Revised

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marcus, Y. (2016). Network Forming Ionic Liquids. In: Ionic Liquid Properties. Springer, Cham. https://doi.org/10.1007/978-3-319-30313-0_4

Download citation

Publish with us

Policies and ethics