Skip to main content

High-Melting Salts

  • Chapter
  • First Online:
Ionic Liquid Properties
  • 1789 Accesses

Abstract

Molten salts are characterized by their melting temperatures and where available their normal boiling points and critical points, all shown in tables. Structural aspects of molten salts as derived from diffraction measurements and computer simulations are tabulated and discussed. The thermochemical properties, as they are theoretically modelled, are dealt with, and the experimental data are tabulated. These include the enthalpies of phase changes, cohesive energies, and heat capacities, the volumetric properties, and surface tension. The transport properties include the viscosity, the electrical conductivity, the self-diffusion, and the thermal conductance, listed in tables. The properties of molten salts as solvents are relevant to non-reactive gases mainly, their solubilities being listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lide D (ed) (2001–2002) Handbook of chemistry and physics, 82nd edn. CRC Press, Baton Rouge

    Google Scholar 

  2. Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer, Berlin

    Google Scholar 

  3. Janz GJ (1967) Molten salts handbook. Academic, New York

    Google Scholar 

  4. March NH, Tosi MP (1991) Boiling of alkali halides: an ionic to molecular phase transition. Phys Chem Liq 10:95–98

    Article  Google Scholar 

  5. Lely JA, Bijvoet JM (1942) Crystal structure of lithium cyanide. Rec Trav Chim Pays Bas Belg 61:244–252

    Article  CAS  Google Scholar 

  6. Kondo Y, Schoemaker D, Luty F (1979) Molecular motion and ordering in rubidium cyanide, studied with dielectric and Raman techniques. Phy Rev B 19:4210–4219

    Article  CAS  Google Scholar 

  7. Poulsen FW (1985) Ionic conductivity of solid and molten lithiumthiocyanate and its hydrate. Acta Chem Scand A 39:290–292

    Article  Google Scholar 

  8. Gafurov MM, Aliev AR, Akhmalov IR (2002) Raman and infrared study of the crystals with molecular anions in the region of a solid-liquid phase transition. Spectrochim Acta A 58:2683–2692

    Article  CAS  Google Scholar 

  9. Farber M, Srivastava RD, Moyer JW, Leeper JD (1985) Electron- impact and thermodynamic studies of potassium metaborate. J Chem Soc Faraday Trans 1(81):913–918

    Article  Google Scholar 

  10. Kato Y, Asano M, Harada T, Mizutani Y (1992) Mass- spectrometric study of the thermodynamic properties of rubidium metaborate- cesium metaborate {xRbBO2 + (1 – x) CsBO2}. J Chem Thermodyn 24:1033–1038

    Article  CAS  Google Scholar 

  11. Honda H, Ishimaru S, Ikeda R (1999) Ionic dynamics in LiNO2 studied by 7Li and 15N solid NMR. Z Naturforsch A 54:519–523

    Article  CAS  Google Scholar 

  12. Popovskaya NP, Protsenko PI, Eliseeva AF (1968) Surface tension of some univalent metal nitrite and nitrate melts. Russ J Inorg Chem 13:498–501

    Google Scholar 

  13. Markowitz MM, Boryta DA, Stewart H Jr (1964) The differential thermal analysis of perchlorates. VI. Transient perchlorate formation during the pyrolysis of the alkali metal chlorates. J Phys Chem 68:2822–2829

    Article  Google Scholar 

  14. Simmons JP, Waldeck WF (1931) The system: lithium bromate- water. J Am Chem Soc 53:1725–1727

    Article  CAS  Google Scholar 

  15. Sahoo MK, Bhatta D (1992) Effect of barium(2+) doping on the thermal decomposition of cesium bromate. Thermochim Acta 197:391–397

    Article  CAS  Google Scholar 

  16. Karataeva IM, Vinogradov EE (1974) Lithium iodate- rubidium iodate- water and lithium iodate- cesium iodate- water systems at 50.deg. Zh Neorg Khim 19:3156–3160

    CAS  Google Scholar 

  17. Ram KD, Tripathi R (1990) Study of iodide- iodate isotopic exchange reaction in a few eutectic melts by radiotracer technique. Appl Radiat Isot 41:879–885, extrapolated

    Article  CAS  Google Scholar 

  18. Bui HL, de Klerk A (2013) Lithium C1- C12 n- alkanoates: thermal behavior from −30 °C to 600 °C. J Chem Eng Data 58:1039–1049

    Article  CAS  Google Scholar 

  19. Ikeda R, Ishimaru S, Tanabe T, Nakamura D (1995) A noble ionic plastic phase of cesium formate studied by 1H, 2H and 133Cs NMR and electrical conductivity measurements. J Mol Struct 345:151–157

    Article  CAS  Google Scholar 

  20. Karnowsky MM, Clark RP, Biefeld RM (1978) The phase diagram of the system lithium chromate(VI) – potassium chromate(VI). J Solid State Chem 23:219–223

    Article  CAS  Google Scholar 

  21. Samuseva RG, Okunev YA, Plyushchev VE (1967) Binary systems from chromates and dichromates of potassium, rubidium, and cesium. Zh Neorg Khim 12:2822–2824

    CAS  Google Scholar 

  22. Yamawaki M, Oka T, Yasumoto M, Sakurai H (1993) Thermodynamics of vaporization of cesium molybdate by means of mass spectrometry. J Nucl Mater 201:257–260

    Article  CAS  Google Scholar 

  23. Chang LLY, Sachdev S (1975) Alkali tungstates. Stability relations in the systems alkali monotungstate-tungsten trioxide. J Am Ceram Soc 58:267–270

    Article  CAS  Google Scholar 

  24. Spitsyn VI, Meerov MA (1952) Pyrosulfates of the alkali elements. Russ J Gen Chem 22:905–912

    CAS  Google Scholar 

  25. Vesnin YI, Khirpin LA (1966) Polymorphic transformations of alkali metal bichromates. Zh Neorg Khim 11:2216–2221

    CAS  Google Scholar 

  26. Hatem G, Eriksen KM, Gaune-Escarde M, Fehrmann R (2002) SO2 oxidation catalyst model systems characterized by thermal methods. Top Catal 19:323–329

    Article  CAS  Google Scholar 

  27. White KA III, Winnik J (1985) Electrochemical removal of hydrogen sulfide from hot coal gas: electrode kinetics. Electrochim Acta 30:511–519

    Article  CAS  Google Scholar 

  28. Jensen E (1947) Melting relations of chalcocite. Avhandl Norske Vidensk Akad I 6:1–14

    Google Scholar 

  29. Shirokov AV, Kozlov GS (1978) Composition- melting point phase diagram of the calcium nitrate- magnesium nitrate system. Zh Priklad Khim 51:1869

    CAS  Google Scholar 

  30. Xiao F-S, Xu W, Qiu S, Xu R (1994) New route for dispersion of inorganic salts onto the channel surfaces of microporous crystals: high dispersion of CuCl2 in zeolites using a microwave technique. J Mater Chem 4:735–739

    Article  CAS  Google Scholar 

  31. Maier CG (1925) Vapor pressure of the common metallic chlorides and a static method at high temperatures. Tech Paper 360:1–54

    CAS  Google Scholar 

  32. Klement W Jr (1976) Melting temperatures of lead (II) nitrate up to a pressure of 30 kbar. Bull Soc Chim Fr 1656:11–12

    Google Scholar 

  33. Ippolitov EG, Makhlachko AG (1970) Phase diagram of the molten and solid barium fluoride- yttrium fluoride system. Izv Akad Nauk SSSR Neorg Mat 6:146–148

    CAS  Google Scholar 

  34. Dennison DH, Spedding FH, Daane AH (1959) Determination of the melting point, vapor pressure, and decomposition temperature of YI3. US AEC Rep IS-57:1–16

    Google Scholar 

  35. Gong W, Wu Y, Zhang R, Gaune-Escard M (2012) Phase equilibrium in lanthanide halide systems: assessment of CeBr3 and MBr- CeBr3 systems (M=Li, Na, K, Rb, Cs). CALPHAD 35:44–51

    Article  CAS  Google Scholar 

  36. Chervonnyl AD, Chervonnaya NA (2007) The thermodynamic properties of 4f metal trifluorides. Russ J Phys Chem 81:1543–1559

    Article  CAS  Google Scholar 

  37. Rycerz L, Gong W, Gaune-Escard M (2013) The TbBr3- LiBr binary system: experimental thermodynamic investigation and assessment of phase diagram. J Chem Thermodyn 56:15–20

    Article  CAS  Google Scholar 

  38. D’Eye RWM, Martin FS (1957) The barium fluoride- uranium trifluoride system. J Chem Soc 1847–1851

    Google Scholar 

  39. Haereid S, Julsrud S, Grande T (1991) On the solubility of noble metals in melts based on zirconium(IV) fluoride. Mater Sci Forum 67–68:291–296

    Article  Google Scholar 

  40. Korenev YUM, Sorokin ID, Chirina NA, Novoselova AV (1972) Vapor pressure of hafnium tetrafluoride. Zh Neorg Khim 17:1195–1198

    CAS  Google Scholar 

  41. Hannebohn O, Klemm W (1936) Measurements on gallium and indium compounds. XI. Fluorides of gallium, indium and thallium. Z Anorg Allg Chem 229:337–351

    Article  CAS  Google Scholar 

  42. Seifert HJ (2005) Melting points of lanthanide trichlorides. An unsolved problem. J Therm Anal Calorim 82:575–580

    Article  CAS  Google Scholar 

  43. Cordfunke EHP, Kubaschewski O (1984) The thermochemical properties of the system uranium- oxygen- chlorine. Thermochim Acta 74:235–245

    Article  CAS  Google Scholar 

  44. Skudlarski K, Miller M (1980) Sublimation and mass spectrometry of copper(I) cyanide. Intl J Mass Spect Ion Phys 36:19–30

    Article  CAS  Google Scholar 

  45. Goodwin HM, Mailey RD (1908) On the density, electrical conductivity and viscosity of fused salts and their mixtures. V. Phys Rev 25–26:469–489

    Google Scholar 

  46. Furakawa Y, Nakamura D (1990) Thallium nuclear magnetic relaxation in solid thallium(I) thiocyanate TlSCN: phase transition and ionic motion. Z Naturforsch 45a:1211–1216

    Google Scholar 

  47. Dennis LM, Doan M, Gill AC (1896) Some new compounds of thallium. J Am Chem Soc 18:970–977

    Article  CAS  Google Scholar 

  48. Moriya K, Matsuo T, Suga H (1988) Thermodynamic properties of alkali and thallium nitrites: the ionic plastically crystalline state. Thermochim Acta 132:133–140

    Article  CAS  Google Scholar 

  49. Sokolov NM (1979) Study of the properties of thallium salts of fatty acids. Russ J Inorg Chem 24:1938–1940

    Google Scholar 

  50. Carlson CM, Eyring H, Ree T (1960) Significant structures in liquids. III. Partition function for fused salts. Proc Natl Acad Sci U S A 46:333–336

    Article  CAS  Google Scholar 

  51. McQuarrie DA (1962) Theory of fused salts. J Phys Chem 66:1508–1513

    Article  CAS  Google Scholar 

  52. Kirshenbaum AD, Cahill JA, McGonical PJ, Grosse AV (1962) The density of liquid NaCl and KCl and an estimate of their critical constants together with those of the other alkali halides. J Inorg Nucl Chem 24:1287–1296

    Article  CAS  Google Scholar 

  53. Pitzer KS (1984) Critical point and vapor pressure of ionic fluids including sodium chloride and potassium chloride. Chem Phys Lett 105:484–489

    Article  CAS  Google Scholar 

  54. Rebelo LPN, Lopes JNC, Esperança JMSS, Filipe E (2005) On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J Phys Chem B 109:6040–6043, supporting information Table A

    Article  CAS  Google Scholar 

  55. Weiss VC (2010) Guggenheim’s rule and the enthalpy of vaporization of simple and polar fluids, molten salts, and room temperature ionic liquids. J Phys Chem B 114:9183–9194

    Article  CAS  Google Scholar 

  56. Guissani Y, Guillot B (1994) Coexisting phases and criticality in NaCl by computer simulation. J Chem Phys 101:490–509

    Article  CAS  Google Scholar 

  57. Leu A-L, Ma S-M, Eyring H (1975) Properties of molten magnesium oxide. Proc Natl Acad Sci U S A 72:1026–1030

    Article  CAS  Google Scholar 

  58. Hoch M (1988) The critical point data of refractory metals, aluminum oxide and uranium dioxide using the Hoch- Arpshofen method. J Nucl Mater 152:289–294

    Article  Google Scholar 

  59. Zarzycki G (1957) The critical point data of refractory metals, aluminum oxide and uranium dioxide using the Hoch- Arpshofen method. J Phys Radium 18:65A-69A. Study of molten salts by x- ray diffraction. II. Structure in the liquid state of the chlorides LiCl, NaCl, KCl, BaCl2, and of the fluoride CaF2. General considerations on the structure of molten halides (1958) J Phys Radium 19:13A–19A

    Google Scholar 

  60. Levy HA, Danford MD (1964) Diffraction studies of the structure of molten salts. In: Blander M (ed) Molten salt chemistry. Interscience, New York, pp 109–125

    Google Scholar 

  61. Ohno H, Igarashi K, Umesaki N, Furukawa K (1994) X-ray diffraction of molten salts. Molten Salt Forum 3:1–230

    Google Scholar 

  62. Neilson GW, Adya AK (1997) Neutron diffraction studies on liquids. Annu Rep Program Chem C Phys Chem 93:101–145

    Article  CAS  Google Scholar 

  63. Neilson GW, Adya AK, Ansel S (2002) Neutron and X- ray diffraction studies on complex liquids. Annu Rep Program Chem C Phys Chem 98:273–322

    CAS  Google Scholar 

  64. Di Cicco A (1996) Local structure in binary liquids probed by EXAFS. J Phys Condens Matter 8:9341–9345

    Article  CAS  Google Scholar 

  65. Antonov BD (1975) The x-ray diffraction study of molten alkali metal bromides and iodides. J Struct Chem 16:474–476

    Article  Google Scholar 

  66. Ohno H, Furukawa K (1981) X-ray diffraction analysis of molten sodium chloride near its melting point. J Chem Soc Faraday Trans 1(77):1981–1985

    Article  Google Scholar 

  67. Levy HA, Agron PA, Bredig M, Danford MD (1960) X- ray and neutron diffraction studies of molten alkali halides. Ann N Y Acad Sci 79:762–780

    Article  CAS  Google Scholar 

  68. Saito M, Park C, Omote K, Sugiyama K, Waseda Y (1997) Partial structural functions of molten CuBr estimated from the anomalous X- ray scattering measurements. J Phys Soc Jpn 66:633–640

    Article  CAS  Google Scholar 

  69. Furukawa K (1961) Structure of molten salts near the melting point. Disc Faraday Soc 32:53–62

    Article  Google Scholar 

  70. Zarzycki G (1961) High- temperature x- ray diffraction studies of fused salts. Structure of molten alkali carbonates and sulfates. Disc Faraday Soc 32:38–48

    Article  Google Scholar 

  71. Okamoto Y, Shiwaku H, Yaita T, Suzuki S, Minato K, Tanida H (2004) Local structure of molten CdCl2 systems. Z Naturforsch 59a:819–824

    Google Scholar 

  72. Iwadate Y, Fukushima K, Nakazawa T, Okamoto Y (2002) Local structure of ZnBr2- KBr melts analyzed by X- ray diffraction, Raman spectroscopy, and molecular orbital calculation. J Non Cryst Sol 312–314:424–427

    Article  Google Scholar 

  73. Okamoto Y, Madden PA (2005) Structural study of molten lanthanum halides by X- ray diffraction and computer simulation techniques. J Phys Chem Sol 66:448–451

    Article  CAS  Google Scholar 

  74. Iwadate Y, Suzuki K, Onda N et al (2006) Local structure of molten LaCl3 analyzed by X- ray diffraction and La- LIII absorption- edge XAFS technique. J Alloy Comp 412:248–252

    Article  CAS  Google Scholar 

  75. Igarashi K, Kosaka M, Ikeda M, Mochinaga J (1990) X- ray diffraction analysis of neodymium trichloride melt. Z Naturforsch 45a:623–626

    Google Scholar 

  76. Iwadate Y, Iida T, Fukushima K, Mochinaga J, Gaune-Escarde M (1994) X- ray diffraction study on the local structure of molten ErCl3. Z Naturforsch 49a:811–814

    Google Scholar 

  77. Okamoto Y, Madden PA, Minato K (2005) X- ray diffraction and molecular dynamics simulation studies of molten uranium chloride. J Nucl Mater 344:109–114

    Article  CAS  Google Scholar 

  78. Ohno H, Igarashi K, Iwadate Y, Murofushi M, Mochinaga J, Furukawa K (1986) X- ray diffraction analysis of some molten salts with low melting point. Proc Electrochem Soc 86:296–306

    Google Scholar 

  79. Page DI, Mika K (1971) Partial structure factors of molten cuprous chloride from neutron diffraction measurements. J Phys C 4:3034–3044

    Article  CAS  Google Scholar 

  80. Edwards FG, Enderby JE, Howe RA, Page DI (1975) Structure of molten sodium chloride. J Phys C 8:3483–3490

    Article  CAS  Google Scholar 

  81. Biggin S, Enderby JE (1982) Comments on the structure of molten salts. J Phys C 15:L305–L309

    Article  CAS  Google Scholar 

  82. Howe MA, McGreevy RL (1988) A neutron- scattering study of the structure of molten lithium chloride. Philos Mag B 58:485–495

    Article  CAS  Google Scholar 

  83. McGreevy RL, Howe MA (1989) The structure of molten lithium chloride. J Phys Condens Matter 1:9957–9962

    Article  CAS  Google Scholar 

  84. Derrien JY, Dupuy J (1975) Structural analysis of the ionic liquids potassium chloride and cesium chloride by neutron diffraction. J Phys 36:191–198

    Article  CAS  Google Scholar 

  85. Mitchell EWJ, Poncet PFJ, Stewart RJ (1976) The ion pair distribution functions in molten rubidium chloride. Philos Mag B 34:721–732

    Article  CAS  Google Scholar 

  86. Eisenberg S, Jal J-F, Dupuy J, Chieux P, Knoll W (1982) Neutron diffraction determination of the partial structure factors of molten cuprous chloride. Philos Mag A 46:195–209

    Article  CAS  Google Scholar 

  87. Allen DA, Howe RA (1992) A measurement of the structure of the superionic conductor copper(I) bromide in its liquid phase by neutron diffraction. J Phys Condens Matter 4:6029–6038

    Article  CAS  Google Scholar 

  88. Derrien JY, Dupuy J (1976) Structure of molten silver chloride. Phys Chem Liq 5:71–91

    Article  CAS  Google Scholar 

  89. Locke J, Messoloras S, Stewart RJ, McGreevy RL, Mitchell EWJ (1985) The structure of molten cesium chloride. Philos Mag B 51:301–315

    Article  CAS  Google Scholar 

  90. Biggin S, Gay M, Enderby JE (1984) The structures of molten magnesium and manganese(II) chlorides. J Phys C 17:977–985

    Article  CAS  Google Scholar 

  91. Biggin S, Enderby JE (1981) The structure of molten calcium chloride. J Phys C 14:3577–3583

    Article  CAS  Google Scholar 

  92. McGreevy RL, Mitchell EWJ (1982) The determination of the partial pair distribution functions for molten strontium chloride. J Phys C 15:5537–5550

    Article  CAS  Google Scholar 

  93. Edwards FG, Howe RA, Enderby JE, Page DI (1978) The structure of molten barium chloride. J Phys C 11:1053–1057

    Article  CAS  Google Scholar 

  94. Newport RJ, Howe RA, Wood ND (1985) The structure of molten nickel chloride. J Phys C 18:5249–5257

    Article  CAS  Google Scholar 

  95. Adya AK, Takagi R, Sakurai M, Gaune-Escard M (1998) Structural and thermodynamic properties of molten DyCl3 and DyCl3- NaCl systems. Proc Electrochem Soc 98–11:499–512

    Google Scholar 

  96. Hardacre C (2005) Application of EXAFS to molten salts and ionic liquid technology. Annu Rev Mater Res 35:29–40

    Article  CAS  Google Scholar 

  97. Di Cicco A, Rosolen MJ, Narassi R, Tossici R, Filiponi A, Rybicki J (1996) Short- range order in solid and liquid KBr probed by EXAFS. J Phys Condens Matter 8:10779–10797

    Article  Google Scholar 

  98. Di Cicco AJ (1996) Local structure in binary liquids probed by EXAFS. J Phys Condens Matter 8:9341–9345

    Article  Google Scholar 

  99. Li H, Lu K, Wu Z, Dong J (1994) EXAFS studies of molten ZnCl2, RbCl and Rb2ZnCl4. J Phys Condens Matter 6:3629–3640

    Article  Google Scholar 

  100. Minicucci M, Di Cicco A (1997) Short- range structure in solid and liquid CuBr probed by multiple- edge x- ray- absorption spectroscopy. Phys Rev B 56:11456–11464

    Article  CAS  Google Scholar 

  101. Di Cicco A, Minicucci M, Filiponi A (1997) New advances in the study of local structure of molten binary salts. Phys Rev Lett 78:460–463

    Article  Google Scholar 

  102. Trapananti A, Di Cicco A, Minicucci M (2002) Structural disorder in liquid and solid CuI at high temperature probed by x-ray absorption spectroscopy. Phys Rev B 66:014202-1/11

    Google Scholar 

  103. Inui M, Takeda S, Maruyama K, Shirakawa Y, Tamaki S (1995) XAFS measurements on molten silver halides. J Non Cryst Solids 192–193:351–354

    Article  Google Scholar 

  104. Okamoto Y, Yaita T, Minato K (2004) High- temperature XAFS study of solid and molten SrCl2. J Non Cryst Solids 333:182–186

    Article  CAS  Google Scholar 

  105. Okamoto Y, Fukushima K, Iwadate Y (2002) XAFS study of molten zinc dibromide. J Non Cryst Solids 312–314:450–453

    Article  Google Scholar 

  106. Watanabe S, Matsuura H, Akatsuka H, Okamoto Y, Madden PA (2005) Structural investigation on lead fluoride- lithium fluoride at various compositions and temperatures. J Nucl Mater 144:104–108

    Article  CAS  Google Scholar 

  107. Okamoto Y, Shiwaku H, Yaita T, Narita H, Ranida H (2002) Local structure of molten LaCl3 by K- absorption edge XAFS. J Mol Struct 641:71–76

    Article  CAS  Google Scholar 

  108. Okamoto Y, Shiwaku H, Yaita T, Suzuki S, Gaune-Escarde M (2013) High- energy EXAFS study of molten GdCl3 systems. J Mol Liq 187:94–98

    Article  CAS  Google Scholar 

  109. Larsen B (1974) Monte- Carlo calculations on a charged hard sphere model. Chem Phys Lett 27:47–51

    Article  CAS  Google Scholar 

  110. Larsen B (1976) Studies in statistical mechanics of Coulombic systems. I. Equation of state for the restricted primitive model. J Chem Phys 65:3431–3438

    Article  CAS  Google Scholar 

  111. Adams DJ, McDonald IR (1974) Rigid- ion models of the interionic potential in the alkali halides. J Phys C: Solid State Phys 7:2761–2773

    Article  CAS  Google Scholar 

  112. Tosi MP, Fumi FG (1964) Ionic sizes and born repulsive parameters in the NaCl- type alkali halides. I. Huggins- Mayer and Pauling forms. J Phys Chem Solids 25:31–43; Ionic sizes and born repulsive parameters in the NaCl- type alkali halides. II. Generalized Huggins- Mayer forms (1964) J Phys Chem Solids 25:45–58

    Google Scholar 

  113. Michielsen J, Woerlee P, van de Graaf F, Ketelaar JAA (1975) Pair potential for alkali metal halides with rock salt crystal structure. Molecular dynamics calculations on sodium chloride and lithium iodide. J Chem Soc Faraday Trans 2(71):1730–1740

    Article  Google Scholar 

  114. Harada M, Tanigaki M, Yao M, Kinoshita M (1982) Application of simple perturbation theory to uni- univalent molten salts. J Chem Soc Faraday Trans 2(78):1985–1999

    Article  Google Scholar 

  115. Margheritis C, Sinistri C (1988) The soft ion model in Monte Carlo simulation of molten salts. Z Naturforsch 43a:129–132

    Google Scholar 

  116. Wilson M, Madded PA, Costa-Cabral BJ (1996) Quadrupole polarization in simulations of ionic systems: application to AgCl. J Phys Chem 100:1227–1237

    Article  CAS  Google Scholar 

  117. Woodcock LV, Singer K (1971) Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. 1. Potassium chloride. Trans Faraday Soc 67:12–30

    Article  CAS  Google Scholar 

  118. Woodcock LV (1971) Isothermal molecular dynamics calculations for liquid salts. Chem Phys Lett 10:257–261

    Article  CAS  Google Scholar 

  119. Lewis JWE, Singer K, Woodcock LV (1975) Thermodynamic and structural properties of liquid ionic salts obtained by Monte Carlo computation. 2. Eight alkali metal halides. J Chem Soc Faraday Trans 2(71):308–319

    Google Scholar 

  120. Margheritis C, Sinistri C (1988) Interionic potentials and Monte Carlo simulations of molten silver (I) chloride. Z Naturforsch 43a:751–754

    Google Scholar 

  121. Baranyai A, Ruff I, McGreevy RL (1986) Monte Carlo simulation of the complete set of molten alkali halides. J Phys C 19:453–465

    Article  CAS  Google Scholar 

  122. Dixon M, Sangster MJL (1976) A comparison of the structure and some dynamical properties of molten rubidium halides. J Phys C 9:3381–3388

    Article  CAS  Google Scholar 

  123. Dixon M, Sangster MJL (1977) Computer simulation study of the structural properties of molten cesium halides. J Phys C 10:3015–3023

    Article  CAS  Google Scholar 

  124. Bassen A, Lemke A, Bertagnolli H (2000) Monte Carlo and reverse Monte Carlo simulations on molten zinc chloride. Phys Chem Chem Phys 2:1445–1454

    Article  CAS  Google Scholar 

  125. Barreto LS, Mort KA, Jackson RA, Alves OL (2002) Molecular dynamics simulation of anhydrous lithium acetate: crystalline and molten phases. J Non Cryst Solids 303:281–290

    Article  CAS  Google Scholar 

  126. Wang J, Sun Z, Lu G, Yu J (2014) Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides. J Phys Chem B 118:10196–10206

    Article  CAS  Google Scholar 

  127. Belashchenko DK, Ostrovski OI (2002) Computer modelling of liquid salts RbBr, CuCl, CuBr, CuI and AgBr. CALPHAD 26:523–538

    Article  CAS  Google Scholar 

  128. Belashchenko DK, Ostrovski OI (2005) Computer modelling of molten halides using diffraction data. Trans Inst Miner Metall C 114:C154–C159

    Google Scholar 

  129. Di Ciccon A, Taglienti M, Minicucci M (2000) Short- range structure of solid and liquid AgBr determined by multiple- edge x- ray absorption spectroscopy. Phys Rev B 62:12001–12012

    Article  Google Scholar 

  130. Siquera LJA, Urahata SM, Ribeiro MCC (2003) Molecular dynamics simulation of molten sodium chlorate. J Chem Phys 119:8002–8011

    Article  CAS  Google Scholar 

  131. Stillinger FH Jr (1964) Equilibrium theory of pure fused salts. In: Blander M (ed) Molten salt chemistry. Interscience, New York, pp 1–108

    Google Scholar 

  132. Gillan M (1978) Theories of the thermodynamic properties of pure molten salts. Phys Chem Liq 8:121–141

    Article  CAS  Google Scholar 

  133. Pitzer KS (1987) Thermodynamic properties of ionic fluids over wide ranges of temperature. Pure Appl Chem 59:1–6

    Article  CAS  Google Scholar 

  134. Blander M (2000) Fundamental theories and concepts for predicting thermodynamic properties of high temperature ionic and metallic liquid solutions and vapor molecules. Metall Mater Trans B 31:579–586

    Article  Google Scholar 

  135. Altar W (1937) A study of the liquid state. J Chem Phys 5:577–586

    Article  CAS  Google Scholar 

  136. Fürth R (1941) The theory of the liquid state. I. The statistical treatment of the thermodynamics of liquids by the theory of holes. Proc Camb Phil Soc 37:252–275

    Article  Google Scholar 

  137. Bockris JO’M, Richards NE (1957) The compressibilities, free volumes, and equation of state for molten electrolytes: some alkali halides and nitrates. Proc R Soc Lond A 241:44–66

    Article  CAS  Google Scholar 

  138. Reiss H, Mayer SW, Katz JL (1961) Law of corresponding states for fused salts. J Chem Phys 35:820–826

    Article  CAS  Google Scholar 

  139. Luks KD, Davis HT (1967) Recent statistical mechanical theories of the thermodynamic properties of molten salts. Ind Eng Chem Fund 6:194–208

    Article  CAS  Google Scholar 

  140. Young RE, O’Connell JP (1971) Empirical corresponding states correlation of densities and transport properties of 1–1 alkali metal molten salts. Ind Eng Chem Fund 10:418–423

    Article  Google Scholar 

  141. Harada M, Masataka T, Tada Y (1983) Law of corresponding states of uniunivalent molten salts. Ind Eng Chem Fund 22:116–121

    Article  CAS  Google Scholar 

  142. Lu W-C, Ree T, Gerrard VG, Eyring H (1968) Significant- structure theory applied to molten salts. J Chem Phys 49:797–804

    Article  CAS  Google Scholar 

  143. Vilcu R, Miscdolea C (1967) Significant- structure theory of liquids. Heat capacities, compressibilities, and thermal- expansion coefficients of some molten alkali halides. J Chem Phys 46:906–909

    Article  CAS  Google Scholar 

  144. Cheng D-W, Leu A-L, Ma S-M (1986) Properties of some molten alkali halides. Mater Chem Phys 14:85–95

    Article  CAS  Google Scholar 

  145. Pandey JD, Chaturvedi BR, Pandey RP (1981) Surface tension of molten salts. J Phys Chem 85:1750–1752

    Article  CAS  Google Scholar 

  146. Bremse F, Alejandre J (2003) Cavities in ionic liquids. J Chem Phys 118:4134–4139

    Article  CAS  Google Scholar 

  147. Eyring H, Ree T, Hirai N (1958) Significant structures in the liquid state. Proc Natl Acad Sci U S A 44:683–688

    Article  CAS  Google Scholar 

  148. Clusius K, Goldmann J, Perlick A (1949) Low- temperature research. VII. The specific heat of the alkali halides lithium fluoride, sodium chloride, potassium chloride, potassium bromide, potassium iodide, rubidium bromide, and rubidium iodide between 10° and 273° abs. Z Naturforsch 4a:424–432

    CAS  Google Scholar 

  149. Nakamura T (1981) Influences of mass and bond length on the Debye temperatures of ionic and covalent substances. Jpn J Appl Phys 20:L653–L656

    Article  CAS  Google Scholar 

  150. Duraiswamy S, Haridasan TM (1976) Zero- point motion in alkali halides. Indian J Pure Appl Phys 14:337–340

    CAS  Google Scholar 

  151. Blum H (1967) The chemistry of molten salts. Benjamin, New York

    Google Scholar 

  152. Yosim SJ, Owens BB (1964) Calculation of thermodynamic properties of fused salts from a rigid- sphere equation of state. J Chem Phys 41:2032–2036

    Article  CAS  Google Scholar 

  153. Cantor S, McDermott DP, Gilpatrick LO (1970) Volumetric properties of molten and crystalline alkali fluoroborates. J Chem Phys 52:4600–4604

    Article  CAS  Google Scholar 

  154. Marcus Y (2009) Heat capacities of molten salts with polyatomic anions. Thermochim Acta 495:81–84

    Article  CAS  Google Scholar 

  155. Marcus Y (2010) The cohesive energy of molten salts and its density. J Chem Thermodyn 42:60–64

    Article  CAS  Google Scholar 

  156. Marcus Y (2013) Surface tension and cohesive energy density of molten salts. Thermochim Acta 571:77–81

    Article  CAS  Google Scholar 

  157. Bauer SH, Porter RF (1964) Metal halide vapors. Structures and thermochemistry. In: Blander M (ed) Molten salt chemistry. Interscience, New York, pp 607–626

    Google Scholar 

  158. Riccardi R, Sinistri C (1965) Application of differential thermal analysis to the evaluation of latent heats of transition and fusion. Ricer Sci 2(A 8):1026–1037

    Google Scholar 

  159. Dworkin AS (1972) Enthalpy of lithium fluoroborate from 298–700 deg.K. Enthalpy and entropy of fusion. J Chem Eng Data 17:284–285

    Article  CAS  Google Scholar 

  160. Hatem G (1985) Lithium sulfate: calorimetric determination of the temperatures and enthalpies of high- temperature phase transitions. Thermochim Acta 88:433–441

    Article  CAS  Google Scholar 

  161. Cordfunke EHP, Konings RJM, Westrum EF Jr (1988) The thermodynamic properties of cesium metaborate (CsBO2) from 5 to 1000 K. Thermochim Acta 128:31–38

    Article  CAS  Google Scholar 

  162. Kleppa OJ, Meschel SV (1963) Thermochemistry of anion mixtures in simple fused salt systems. II. Solutions of some salts of MO4- and MO42- anions in the corresponding alkali nitrates. J Phys Chem 67:2750–2753

    Article  CAS  Google Scholar 

  163. Reshetnikov NA, Baranskaya EV (1967) Heats of fusion and polymorphic transformations of alkali metal hydroxides. Izv Vyssh Ucheb Zaved Khim Khim Tekh 10:496–499

    CAS  Google Scholar 

  164. Faber M, Srivastava RD, Moyer JW, Leeper JD (1985) Electron- impact and thermodynamic studies of potassium metaborate. J Chem Soc Faraday Trans 1(81):913–918; Slough W, Jones J earlier reported 35.6±4.2 kJ mol−1

    Google Scholar 

  165. Leonesi D, Piantoni G, Berchiesi G, Franzosini P (1968) Thermodynamic properties of organic acid salts. III. Enthalpy and entropy of fusion of sodium and potassium. formates. Ricer Sci 38:702–705

    CAS  Google Scholar 

  166. Marchidan DI, Telea C (1969) Heat of melting in the binary mixtures: rubidium nitrate + potassium nitrate and rubidium nitrate + cesium nitrate. Rev Roum Chim 14:1361–1365

    CAS  Google Scholar 

  167. Zmbov KF, Margrave JL (1967) Mass spectrometric studies at high temperatures. XIV. Vapor pressure and dissociation energy of silver monofluoride. J Phys Chem 71:446–448

    Article  CAS  Google Scholar 

  168. Ferloni P, Kenesey C, Westrum EF Jr (1994) Thermodynamics of alkali alkanoates X. Heat capacities and thermodynamic properties of lithium methanoate and lithium ethanoate at temperatures from ≈5 K to 580 K. J Chem Thermodyn 26:1349–1363

    Article  CAS  Google Scholar 

  169. Kobayashi K, Inoue N, Takano T (1992) Specific heat of solid and molten phases, and latent heat of fusion of some carbonates. Jpn J Thermophys Prop 6:2–7

    Article  Google Scholar 

  170. Brunetti B, Piacente V, Scardala P (2008) Vapor pressures and sublimation enthalpies of copper difluoride and silver(I, II) fluorides by the torsion- effusion method. J Chem Eng Data 53:687–693

    Article  CAS  Google Scholar 

  171. Warnquist B (1980) Comments on thermochemical data and fusion temperature for pure sodium sulfide. Thermochim Acta 37:343–345

    Article  Google Scholar 

  172. Hatem G, Abdoun F, Gaune-Escard M, Eriksen KM, Fehrmann R (1998) Conductometric, density and thermal measurements of the M2S2O7 (M=Na, K, Rb, Cs) salts. Thermochim Acta 319:33–42

    Article  CAS  Google Scholar 

  173. Aleixo AI, Oliviera PH, Diogo H, Minas de Piedale ME (2005) Enthalpies of formation and lattice enthalpies of alkaline metal acetates. Thermochim Acta 428:131–136

    Article  CAS  Google Scholar 

  174. Manolatos S, Tillinger M, Post B (1973) Polymorphism in cesium thiocyanate. J Solid State Chem 7:31–35

    Article  CAS  Google Scholar 

  175. Kubaschewski O, Alcock CB, Spencer PJ (1993) Materials thermochemistry, 6th edn. Pergamon, Oxford

    Google Scholar 

  176. Novikov GI, Baev AK (1962) Vapor pressure of chlorides of trivalent lanthanum, cerium, praseodymium, and neodymium. Zh Neorg Khim 7:1340–1352

    CAS  Google Scholar 

  177. Rycerz L, Ingier-Stocka E, Ziolek B, Gadzuric S, Gaune-Escard M (2004) Heat capacity and thermodynamic properties of LaBr3 at 300–1100 K. Z Naturforsch 59a:825–828

    Google Scholar 

  178. Topor L, Moldoveanu T (1974) Vapor pressures of molten cadmium bromide, cadmium iodide, and magnesium bromide and molecular association in the gaseous phase. Rev Roum Chim 19:985–990 (for MgBr2 the T b is not known)

    CAS  Google Scholar 

  179. Schäfer H, Bayer L, Breil G, Etzel K, Krehl K (1955) Saturation pressures of manganese chloride, ferrous chloride, cobaltous chloride, and nickel chloride. Z Anorg Allg Chem 278:300–309 (for CoCl2 ΔV H°/kJ mol−–1 = 144.9 corrects the entry in [31])

    Article  Google Scholar 

  180. Chervonnyi AD (2007) Chervonnaya NA. The thermodynamic properties of 4f metal trifluorides. Russ J Phys Chem A 81:1543–1559

    Article  CAS  Google Scholar 

  181. Topol LE, Ransom LD (1960) The heats of fusion of the cadmium halides, mercuric chloride, and bismuth bromide. J Phys Chem 64:1339–1340

    Article  CAS  Google Scholar 

  182. Mayer SW, Yosim SJ, Topol LE (1960) Cryoscopic studies in the molten bismuth- bismuth chloride system. J Phys Chem 64:238–240

    Article  CAS  Google Scholar 

  183. Coughlin JP (1951) High- temperature heat content of nickel chloride. J Am Chem Soc 73:5314–5315

    Article  CAS  Google Scholar 

  184. Dworkin AS, Bredig MA (1963) Heats of fusion of some rare earth metal halides. J Phys Chem 67:2499–2950

    Article  CAS  Google Scholar 

  185. Binford JS, Strohmenger JM, Hebert TH (1967) A modified drop calorimeter. The heat content of aluminum carbide and cobalt(II) fluoride above 25°. J Phys Chem 71:2404–2408

    Article  CAS  Google Scholar 

  186. Cubicciotti D (1968) Thermodynamic properties of bismuth trifluoride. J Electrochem Soc 115:1138–1163

    Article  CAS  Google Scholar 

  187. Spedding FH, Henderson DC (1971) High- temperature heat contents and related thermodynamic functions of seven trifluorides of the rare earths: yttrium, lanthanum, praseodymium, neodymium, gadolinium, holmium, and lutetium. J Chem Phys 54:2476–2483

    Article  CAS  Google Scholar 

  188. Kleppa OJ, Wakihara M (1976) Enthalpies of mixing in the liquid mixtures of zinc fluoride with the fluorides of lithium, sodium and potassium. J Inorg Nucl Chem 38:715–719

    Article  Google Scholar 

  189. Wakihara M, Kleppa OJ (1977) Enthalpies of mixing of the liquid mixtures of cadmium fluoride with the fluorides of lithium, sodium, and potassium. High Temp Sci 9:35–43

    CAS  Google Scholar 

  190. Dworkin AS, Bredig MA (1971) Enthalpy of lanthanide chlorides, bromides, and iodides from 298–1300.deg.K: enthalpies of fusion and transition. High Temp Sci 3:81–90

    CAS  Google Scholar 

  191. Emons H-H, Bräutigam G, Thomas R (1976) Vapor pressure measurements for binary fused mixtures of alkaline earth and alkali metal chlorides. Chem Zvesti 30:773–782

    CAS  Google Scholar 

  192. Flesch RM, Knacke O, Münstermann E (1986) Sublimation and dissociation of thorium tetraiodide and thorium oxide diiodide from Knudsen cells. Z Anorg Allg Chem 585:123–134

    Article  Google Scholar 

  193. Gaune-Escard M, Rycerz L, Szczepaniak W, Bogacz A (1994) Enthalpies of phase transition in the lanthanide chlorides LaCl3, CeCl3, PrCl3, NdCl3, GdCl3, DyCl3, ErCl3 and TmCl3. J Alloy Comp 204:193–196

    Article  CAS  Google Scholar 

  194. Sun Y, He M, Qiao ZY (1997) An artificial neural network approach to correlation of enthalpies of fusion for rare earth halides. J Alloy Comp 256:9–12

    Article  CAS  Google Scholar 

  195. Stolyarova VL, Seetharaman S, Svard D, Semenov GA (1998) A high- temperature mass spectrometric study of the vaporization processes of fluxes based on CaO- CaCl2 and CaO- CaF2 systems. Rapid Comm Mass Spectrom 12:1335–1343

    Article  CAS  Google Scholar 

  196. Rycerz L, Gaune-Escard M (2002) Thermodynamics of SmCl3 and TmCl3: experimental enthalpy of fusion and heat capacity. Estimation of thermodynamic functions up to 1300 K. Z Naturforsch 57a:79–84; Thermodynamics of EuCl3: experimental enthalpy of fusion and heat capacity and estimation of thermodynamic functions up to 1300 K (2002) Z Naturforsch 57a:215–220

    Google Scholar 

  197. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttal RL (1982) NBS Tables of thermodynamic data. J Phys Chem Ref Data 11(2):1–391

    Google Scholar 

  198. Morris DFC (1958) Lattice energies and related properties derived by use of lyotropic numbers. J Inorg Nucl Chem 6:295–302

    Article  CAS  Google Scholar 

  199. Ladd MFC, Lee WH (1961) Lattice energies of compounds of the transition- type metals. J Inorg Nucl Chem 23:199–205

    Article  CAS  Google Scholar 

  200. Jenkins HDB (1975) Enthalpy of solvation, ΔH0 solv(CrO4 2−) (g), of gaseous chromate ion as estimated from lattice energy calculations. Chem Phys Lett 35:417–419

    Article  CAS  Google Scholar 

  201. Jenkins HDB, Roobottom HK, Passmore J, Glasser L (1999) Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg Chem 38:3609–3620

    Article  CAS  Google Scholar 

  202. Marcus Y (2010) Heat capacities of molten salts. In: Wilhelm E, Letcher T (eds) Heat capacities. Royal Society of Chemistry, Cambridhe, pp 472–489, Ch. 22

    Chapter  Google Scholar 

  203. Ngeyi SP, Malik I, Westrum EF Jr (1990) Thermodynamics of alkali alkanoates. VII. Heat capacity and thermodynamic functions of potassium acetate from 4 to 585 K. J Chem Thermodyn 22:91–98

    Article  CAS  Google Scholar 

  204. Zamfirescu C, Dincer I, Naterer GF (2010) Thermophysical properties of copper compounds in copper-chlorine thermochemical water splitting cycles. Int J Hydrogen Energy 35:4839–4853

    Article  CAS  Google Scholar 

  205. Block-Bolten A (1955) Sulfur in binary liquid solutions. Arch Gornic Hutnic 3:90–98

    Google Scholar 

  206. Dworkin AS, Bredig MA (1963) The heats of fusion and transition of alkaline earth and rare earth metal halides. J Phys Chem 67:697–698

    Article  CAS  Google Scholar 

  207. Gaune-Escard M, Bogacz A, Rycerz L, Szczepaniak W (1996) Heat capacity of LaCl3, CeCl3, PrCl3, NdCl3, GdCl3, DyCl3. J Alloy Comp 235:176–181

    Article  CAS  Google Scholar 

  208. Rycerz L, Gaune-Escard M (2002) Enthalpies of phase transitions and heat capacity of TbCl3 and compounds formed in TbCl3- MCl systems (M = K, Rb, Cs). J Therm Anal Calorim 68:973–981

    Article  CAS  Google Scholar 

  209. Rycerz L, Gaune-Escard M (2004) Heat capacity and thermodynamic functions of TbBr3. J Chem Eng Data 49:1078–1081

    Article  CAS  Google Scholar 

  210. Leibowitz L, Fischer DF, Chasanov MG (1974) Enthalpy of molten uranium- plutonium oxides. US AEC Report ANL-8082, pp 1–19

    Google Scholar 

  211. Janz GJ, Tomkins RPT, Allen CB, Downey JR, Garner GL, Krebs U, Singer SK (1975) Molten salts: volume 4, part 2, chlorides and mixtures. Electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 4:871

    Article  CAS  Google Scholar 

  212. Janz GJ, Tomkins RPT, Allen CB, Downey JR, Garner GL, Singer SK (1977) Molten salts: volume 4, part 3. Bromides and mixtures; iodides and mixtures. Electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 6:409

    Article  CAS  Google Scholar 

  213. Janz GJ, Tomkins RPT (1981) Molten salts: volume 5, part 1. Additional single and multi- component salt systems. Electrical conductance, density, viscosity, and surface tension data. J Phys Chem Ref Data 9:831–1021

    Article  Google Scholar 

  214. Janz GJ (1988) Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. J Phys Chem Ref Data 17(Suppl 2):1–325

    Google Scholar 

  215. Marcus Y (2015) Volumetric behavior of molten salts and molten salt hydrates: Chapter 20. In: Wilhelm E, Letcher T (eds) Volume properties. Royal Society of Chemistry, Cambridge, pp 526–574

    Google Scholar 

  216. Marcus Y (2013) Volumetric behavior of molten salts. Thermochim Acta 559:111–116

    Article  CAS  Google Scholar 

  217. Campbell AN, Williams DF (1964) The thermodynamics and conductances of molten salts and their mixtures. III. Densities, molar volumes, viscosities, and surface tensions of molten lithium chlorate, with small additions of water, and other substances. Can J Chem 42:1778–1787

    Article  CAS  Google Scholar 

  218. Denielou L, Petitet JP, Tequi C (1976) Thermodynamic study of molten salts with polyatomic anions. J Phys (Paris) 37:1017–1024

    Article  CAS  Google Scholar 

  219. Red’kin AA, Salyulev AB, Smirnov MV, Khokhlov VA (1995) Density and electrical conductivity of NaCl- CoCl2 and NaCl- NiCl2 molten mixtures. Z Naturforsch 50a:998–1002

    Google Scholar 

  220. Red’kin AA, Nikolaeva EV, Dedyukhin AE, Zaikov YP (2012) The electrical conductivity of chloride melts. Ionics 18:255–265

    Article  CAS  Google Scholar 

  221. Marcus Y (2013) The compressibility of molten salts. J Chem Thermodyn 61:7–10

    Article  CAS  Google Scholar 

  222. Stillinger FH (1961) Compressibility of simple fused salts. J Chem Phys 35:1581–1583

    Article  CAS  Google Scholar 

  223. Goldman G, Tödheide K (1976) Equation of state and thermodynamic properties of molten potassium chloride to 1320 K and 6 kbar. Z Naturforsch 31a:769–776

    Google Scholar 

  224. Yajima K, Moriyama H, Oishi J (1984) A model for the surface tension of molten alkali halides. J Phys Chem 88:4390–4394

    Article  CAS  Google Scholar 

  225. Cleaver B, Spencer PN (1955) Isothermal compressibilities and thermal pressure coefficients of molten salts. High Temp High Press 7:539–547

    Google Scholar 

  226. Zhu HM, Saito T, Sato Y, Yamamura T, Shimakage K, Ejima T (1991) Ultrasonic velocity and absorption coefficient in molten alkali metal nitrates and carbonates. J Jpn Inst Met 55:937–944

    CAS  Google Scholar 

  227. Marcus Y (2013) Internal pressure of liquids and solutions. Chem Rev 113:6536–6551

    Article  CAS  Google Scholar 

  228. Fernandez R, Østvold T (1989) Surface tension and density of molten fluorides and fluoride mixtures containing cryolite. Acta Chem Scand 43:151–159

    Article  CAS  Google Scholar 

  229. Hara S, Ogino K (1989) The densities and the surface tensions of fluoride melts. ISIJ Intl 29:477–485

    Article  CAS  Google Scholar 

  230. Herie L (1965) Compressibility of molten alkali salts. J Phys Chem 69:2785–2787

    Article  Google Scholar 

  231. Knape EG, Torell LM (1975) Hypersonic velocities and compressibilities for some molten nitrates. J Chem Phys 62:4111–4115

    Article  CAS  Google Scholar 

  232. Cleaver B, Zani P (1978) Adiabatic thermal pressure coefficients of molten salts; an indirect method for the measurement of isothermal compressibility. High Temp High Press 10:437

    CAS  Google Scholar 

  233. Takesawam K-I, Takeda S, Harada S, Tamaki S (1989) Sound wave propagation in molten silver halides. J Phys Soc Jpn 58:538–543

    Article  Google Scholar 

  234. Bockris JO’M, Pilla A, Barton JL (1962) Compressibilities of certain molten alkaline earth halides and the volume change on fusion of some of the corresponding solids. Rev Chim Rep Pop Roum 7:59–77

    CAS  Google Scholar 

  235. Denisovets VP, Prisyazhii VFD (1988) Ultrasound velocity in melts of alkali metal formates and acetates. Ukr Khim Zh 54:1247–1250

    Google Scholar 

  236. Janz GJ, Lakshminarayanan GR, Tomkins RPT, Wong J (1969) Molten salts. II. Surface tension data. Nat Stand Ref Data Ser Nat Bur Stand 28:49–111

    Google Scholar 

  237. Dutcher CS, Wexler AS, Clegg SL (2010) Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts. J Phys Chem A 114:12216–12230

    Article  CAS  Google Scholar 

  238. Campbell AN, van der Kouwe ET (1968) Thermodynamics and conductances of molten salts and their mixtures. V. The density, change of volume on fusion, viscosity, and surface tension of sodium chlorate and of its mixtures with sodium nitrate. Can J Chem 46:1279–1286

    Article  CAS  Google Scholar 

  239. Gossink RG, Stevels JM (1971) Density and surface tension of molten alkali molybdates and tungstates in connection with structure and glass formation. J Non Cryst Solids 5:217–236

    Article  CAS  Google Scholar 

  240. Patrov BV, Yurkinskii VP (2004) Surface tension and density of a sodium hydroxide melt. Russ J Appl Chem 77:2029–2930

    Article  CAS  Google Scholar 

  241. Lubova Z, Danek V, Nguyen DK (1997) Surface tension of melts of the system KF- KCl- KBF4. Chem Papers 51:78–83

    Google Scholar 

  242. Gardon JL (1977) Critical review of concepts common to cohesive energy density, surface tension, tensile strength, heat of mixing, interfacial tension, and butt joint strength. Coll Interf Sci 59:582–594

    Article  CAS  Google Scholar 

  243. Aqra F (2014) Novel estimated surface tension data of actinide halide salts in the molten state. J Nucl Mater 448:230–232

    Article  CAS  Google Scholar 

  244. BPatrov BV, Yurkinskii VP (2004) Surface tension and density of a sodium hydroxide melt. Zh Priklad Khim 77:2054–2055

    Google Scholar 

  245. Shartsis L, Capps W (1952) Surface tension of molten alkali borates. J Am Ceram Soc 35:169–173

    Article  CAS  Google Scholar 

  246. Aqra F (2014) Surface tension of molten metal halide salts. J Mol Liq 200:120–121

    Article  CAS  Google Scholar 

  247. Aqra F (2014) Molten rare earth tri- halides: prediction of surface tension. J Mol Liq 200:229–231

    Article  CAS  Google Scholar 

  248. Mayer SW (1963) A molecular parameter relation between surface tension and liquid compressibility. J Phys Chem 67:2160–2164

    Article  CAS  Google Scholar 

  249. Reiss H, Frisch HL, Lebowitz JL (1959) Statistical mechanics of rigid spheres. J Chem Phys 31:369–380

    Article  CAS  Google Scholar 

  250. Eggelstaff PA, Widom B (1970) Liquid surface tension near the triple point. J Chem Phys 53:2667–2669

    Article  Google Scholar 

  251. Marcus Y (2013) The compressibility and surface tension product of molten salts. J Chem Phys 139(124509):1–4

    Google Scholar 

  252. Nagashima A (1991) Measurement of transport properties of high- temperature fluids. Intl J Thermophys 12:1–15

    Article  CAS  Google Scholar 

  253. Chhabra RP, Hunter RJ (1981) The fluidity of molten salts. Rheol Acta 20:203–208

    Article  CAS  Google Scholar 

  254. Potapov A, Khokhlov V, Sato Y (2003) Viscosity of molten rare earth metal trichlorides I. CeCl3, NdCl3, SmCl3, DyCl3 and ErCl3. Z Natorforsch A 58:457–463

    CAS  Google Scholar 

  255. Potapov A, Sato Y (2011) Viscosity of molten rare earth metal trichlorides. II. Cerium subgroup. Z Natorforsch A 66:649–655

    CAS  Google Scholar 

  256. Marcus Y (2014) The fluidity of molten salts re- examined. Fluid Phase Equilib 366:57–60

    Article  CAS  Google Scholar 

  257. Hildebrand JH, Lamoreaux RH (1976) Viscosity of liquid metals: an interpretation. Proc Natl Acad Sci U S A 73:988–989

    Article  CAS  Google Scholar 

  258. Janz GJ, Yamamura T, Hansen MD (1989) Corresponding- states data correlations and molten salts viscosities. Intl J Thermophys 10:159–171

    Article  CAS  Google Scholar 

  259. Abe Y, Nagashima A (1981) The principle of corresponding states for alkali halides viscosity. J Chem Phys 75:3977–3985

    Article  CAS  Google Scholar 

  260. Tada Y, Hiraoka S, Uemura T, Harada M (1958) Corresponding states correlation of transport properties of uniunivalent molten salts. Ind Eng Chem Res 27:1042–1049

    Article  Google Scholar 

  261. Tomlinson JW (1959) In: Bockris JO’M (ed) Physicochemical measurements at high temperatures. Butterworths, London, 257 ff

    Google Scholar 

  262. Sundheim BR (1964) Transport properties of liquid electrolytes. In: Sundheim BR (ed) Fused salts. McGraw-Hill, New York, pp 208–210

    Google Scholar 

  263. Nunes VMB, Lourenco MJV, Santos FJV, Lopes MLSM, Nieto de Castro CA (2010) Accurate measurement of physicochemical properties on ionic liquids and molten salts. In: Gaune-Escard M, Seddon KR (eds) Molten salts and ionic liquids: never the twain? Wiley, New York, pp 229–263

    Google Scholar 

  264. Woyakowska A, Plinska S, Josiak J, Krzyzak E (2006) Electrical conductivity of molten cobalt dibromide + potassium bromide mixtures. J Chem Eng Data 51:1256–1260

    Article  CAS  Google Scholar 

  265. Kojima T, Miyazaki Y, Nomura K, Animoto K (2007) Electrical conductivity of molten Li2CO3− X2CO3 (X = Na, K, Rb, and Cs) and Na2CO3- Z2CO3 (Z: K, Rb, and Cs). J Electrochem Soc 154:F222–F230

    Article  CAS  Google Scholar 

  266. Gaune P, Gaune-Escard M, Rycerz L, Bogacz A (1996) Electrical conductivity of molten LnCl3 and M3LnCl6 compounds (Ln = La, Ce, Pr, Nd; M = K, Rb, Cs). J Alloy Comp 233:143–149

    Article  Google Scholar 

  267. Rice SA (1962) Kinetic theory of ideal ionic melts. Trans Faraday Soc 58:499–510

    Article  CAS  Google Scholar 

  268. Angell CA (1965) Diffusion- conductance relations and free volume in molten salts. J Phys Chem 69:399–403

    Article  CAS  Google Scholar 

  269. Klemm A (1964) Transport properties of molten salts. In: Blander M (ed) Molten salt chemistry. Interscience, New York, pp 538–606

    Google Scholar 

  270. Haase R (1991) Internal and external transport numbers in ionic melts. Z Phys Chem (Muenchen) 174:77–87

    Article  CAS  Google Scholar 

  271. Harris KR (2010) Relations between the fractional stokes- einstein and nernst- einstein equations and velocity correlation coefficients in ionic liquids and molten salts. J Phys Chem B 114:9572–9577

    Article  CAS  Google Scholar 

  272. Sjoblom CA (1968) Self-diffusion in molten salts. A comparison between diffusion theories and experimental data. Z Naturforsch A 23:933–939

    CAS  Google Scholar 

  273. Lenke R, Uelenhack W, Klemm A (1973) Self-diffusion in molten lithium chloride. Z Naturforsch 28A:881–884

    Google Scholar 

  274. Rollet A-L, Sarou-Kanian V, Bessada C (2010) Self-diffusion coefficient measurements at high temperature by PFG NMR. C R Chim 13:399–404

    Article  CAS  Google Scholar 

  275. Fürth R (1941) The theory of the liquid state. III. The hole theory of the viscous flow of liquids. Proc Camb Phil Soc 37:281–290

    Article  Google Scholar 

  276. Adam G, Gibbs JH (1965) The temperature dependence of cooperative relaxation properties in glass- forming liquids. J Chem Phys 43:139–146

    Article  CAS  Google Scholar 

  277. Gheribi AE, Torres JA, Chartrand P (2014) Recommended values for the thermal conductivity of molten salts between the melting and boiling points. Solar Energy Mater Solar Cells 126:11–25

    Article  CAS  Google Scholar 

  278. Cornwell K (1971) Thermal conductivity o molten salts. J Phys D Appl Phys 4:441–445

    Article  CAS  Google Scholar 

  279. DiGuilio RM, Teja AS (1992) A rough hard-sphere model for the thermal conductivity of molten salts. Intl J Thermophys 13:855–871

    Article  CAS  Google Scholar 

  280. Hossain MZ, Kassaee MH, Jeter S, Teja AS (2014) A new model for the thermal conductivity of molten salts. Intl J Thermophys 35:246–255

    Article  CAS  Google Scholar 

  281. Turnbull AG (1961) The thermal conductivity of molten salts. II. Theory and results for pure salts. Aust J Appl Sci 12:324–329

    CAS  Google Scholar 

  282. Bloom H, Dobroszkowski A, Thicklebank SB (1965) Molten salt mixtures. IX. The thermal conductivities of molten nitrate systems. Aust J Chem 18:1171–1176

    Article  CAS  Google Scholar 

  283. Grimes WR, Smith NV, Watson GM (1958) Solubility of noble gases in molten fluorides. I. In mixtures of NaF- ZrF4 (53-47 mole %) and NaF- ZrF4- UF4 (50-46-4 mole %). J Phys Chem 62:862–866

    Article  CAS  Google Scholar 

  284. Tomkins RPT, Bansal N (1991) Solubility data series 45–46. Pergamon Press, Oxford

    Google Scholar 

  285. Tomkins RPT (2003) Solubility of gases in molten salts and molten metals. Wiley Ser Solut Chem 6:173–217

    CAS  Google Scholar 

  286. Cleaver B, Mather DE (1970) Solubilities of helium, argon, and nitrogen in molten nitrates at pressures up to 1 kilobar. Trans Faraday Soc 66:2469–2482

    Article  CAS  Google Scholar 

  287. Green WG, Field PE (1980) Interaction of gases in ionic liquid. 2. The solubility of argon and nitrogen in molten lithium nitrate and potassium nitrate. J Phys Chem 84:3111–3114

    Article  CAS  Google Scholar 

  288. Sada E, Katoh S, Yoshii H, Takemoto I, Shiomi N (1981) Solubility of carbon dioxide in molten alkali halides and nitrates and their binary mixtures. J Chem Eng Data 26:279–281

    Article  CAS  Google Scholar 

  289. Bratland D, Grjotheim K, Krohn C, Motzfeld K (1966) Solubility of carbon dioxide in molten alkali halides. Acta Chem Scand 20:1811–1826

    Article  CAS  Google Scholar 

  290. Field PE, Green WG (1971) Interactions of gases in ionic liquids. I. Solubility of nonpolar gases in molten sodium nitrate. J Phys Chem 75:821–825

    Article  CAS  Google Scholar 

  291. Sada E, Katoh S, Beniko H, Yoshii H, Kayano M (1980) Solubility of carbon dioxide in molten salts. J Chem Eng Data 25:45–47

    Article  CAS  Google Scholar 

  292. Blander M, Grimes WR, Smith NV, Watson GM (1959) Solubility of noble gases in molten fluorides. II. In the LiF- NaF- KF eutectic mixture. J Phys Chem 63:1164–1167

    Article  CAS  Google Scholar 

  293. Fukase S (1983) Solubility of rare gases in molten salts. J Phys Chem 87:1768–1776

    Article  CAS  Google Scholar 

  294. Simonin JP (2011) Effect of polarization on the solubility of gases in molten salts. J Chem Phys 134(054508):1–9

    Google Scholar 

  295. Brough BJ, Kerridge DH, Mosley M (1966) Indicators in fused salts. J Chem Soc A 1556–1558

    Google Scholar 

  296. Burnasheva IA, Gordienko AA, Toropov AP (1971) Solubility of organic substances in some fused low- melting salts and salt eutectics. Teor Rastvorov 248–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marcus, Y. (2016). High-Melting Salts. In: Ionic Liquid Properties. Springer, Cham. https://doi.org/10.1007/978-3-319-30313-0_3

Download citation

Publish with us

Policies and ethics