Skip to main content

The Properties of Ions Constituting Ionic Liquids

  • Chapter
  • First Online:
Ionic Liquid Properties

Abstract

The properties of isolated ions, namely their molar masses and charges, the standard thermodynamics of their formation, their entropies and heat capacities, their magnetic susceptibilities, polarizabilities and softness are listed in tables. The sizes of ions are in fact relevant only in condensed phases (e.g., ionic liquids) and comprise their radii and ionic volumes that are listed in tables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcus Y, Loewenschuss A (1985) Standard entropies of hydration of ions. Annu Rep 81C:81–135

    Google Scholar 

  2. Loewenschuss A, Marcus Y (1987) Standard thermodynamic functions of gaseous poly-atomic ions at 100 to 1000 K. J Phys Chem Ref Data 16:61–89

    Article  CAS  Google Scholar 

  3. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney L, Nuttall RL (1982) The NBS tables of chemical thermodynamic properties. J Phys Chem Ref Data 11:(Suppl. 2)

    Google Scholar 

  4. Marcus Y (1997) Ion properties. Dekker, New York, and references therein

    Google Scholar 

  5. Bratsch SB, Lagowski JL (1986) Actinide thermodynamic predictions. 3. Thermodynamics of compounds and aquo-ions of the 2+, 3+, and 4+ oxidation states and standard electrode potentials at 298.15 K. J Phys Chem 90:307–312; (1987) Predicted and experimental standard electrode potentials in liquid ammonia at 25°C. J Solution Chem 16:583–601

    Google Scholar 

  6. Olivella S, Urpi F, Vilarrasa J (1984) Evaluation of MNDO calculated proton affinities. J Compt Chem 5:230–236

    Article  CAS  Google Scholar 

  7. Marcus Y (2012) The guanidinium ion. J ChemThermodyn 48:70–74

    CAS  Google Scholar 

  8. Marcus Y, Loewenschuss A (1996) Standard thermodynamic functions of some additional isolated ions at 100–1000 K. J Phys Chem Ref Data 25:1495–1507

    Article  Google Scholar 

  9. Marcus Y (2014) The enthalpy of formation of gaseous tetra-n-propylammonium cations. J Chem Thermodyn 71:196–199

    Article  CAS  Google Scholar 

  10. Abraham MH, Marcus Y (1986) The thermodynamics of solvation of ions. Part 1. The heat capacities of hydration at 298.15 K. J Chem Soc Faraday Trans 82:3255–3274

    Article  CAS  Google Scholar 

  11. Verevkin SP, Emel’yanenko VN, Zaitsau DH, Heintz A, Muzny CD, Frenkel M (2010) Thermochemistry of imidazolium-based ionic liquids: experiment and first-principles Calculations. Phys Chem Chem Phys 12:14994–15000

    Article  CAS  Google Scholar 

  12. Dasent WE (1982) Inorganic energetics, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  13. Caldwell G, Renneboog R, Kebarle P (1989) Gas-phase acidities of aliphatic carboxylic acids, based on measurements of proton-transfer equilibria. Can J Chem 67:611–618

    Article  CAS  Google Scholar 

  14. Glasser L, Jenkins HBD (2012) Single-ion heat capacities, Cp(298)ion, of solids: with a novel route to heat-capacity estimation of complex anions. Inorg Chem 51:6360–6366

    Article  CAS  Google Scholar 

  15. Wood RH, D’Oratio LA (1966) Lattice energy of Na tetrachloroaluminate and the heat of formation of the tetrachloroaluminate ion. Inorg Chem 5:682–894

    Article  CAS  Google Scholar 

  16. Marcus Y (1986) On enthalpies of hydration, ionization potentials, and the softness of ions. Thermochim Acta 104:389–394

    Article  CAS  Google Scholar 

  17. Marcus Y, Jenkins HBD, Glasser L (2002) Ion volumes – a comparison. J Chem Soc Dalton Trans 3795–3798

    Google Scholar 

  18. Selwood PW (1956) Magnetochemistry, 2nd edn. Interscience, New York, p 403

    Google Scholar 

  19. Salzmann JJ, Jørgensen CK (1968) Molar refraction of aquo ions of metallic elements and evaluation of light refraction measurements in inorganic chemistry. Helv Chim Acta 51:1276–1293

    Article  CAS  Google Scholar 

  20. Bica K, Deetlefs M, Schröder C, Seddon KR (2013) Polarisabilities of alkylimidazolium ionic liquids. Phys Chem Chem Phys 15:2703–2711

    Article  CAS  Google Scholar 

  21. Levy HA, Danford MD (1964) Diffraction studies of the structure of molten salts. In: Blander M (ed) Molten salt chemistry. Interscience, New York, pp 109–125

    Google Scholar 

  22. Neilson GW, Adya AK (1997) Neutron diffraction studies of liquids. Annu Rep Progr Chem C 93:101–145

    Article  CAS  Google Scholar 

  23. Neilson GW, Adya AK, Ansel S (2002) Neutron X-ray diffraction studies on complex liquids. Annu Rep Progr Chem C 98:273–322

    Article  CAS  Google Scholar 

  24. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides Acta Cryst. B 25:925–946; (1969) Revised values of effective ionic radii. 26:1046–1048

    Google Scholar 

  25. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst V 32:751–767

    Article  Google Scholar 

  26. Roobottom HK, Jenkins HDB, Passmore J, Glasser (1999) Thermochemical radii of complex ions. J Chem Educ 76:1570–1573

    Article  CAS  Google Scholar 

  27. Jenkins HDB, Roobottom HK, Passmore J, Glasser L (1999) Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg Chem 38:3609–3620

    Article  CAS  Google Scholar 

  28. Glasser L, Jenkins HDB (2008) Internally consistent ion volumes and their application in volume-based thermodynamics. Inorg Chem 47:6195–6202

    Article  CAS  Google Scholar 

  29. Mukerjee P (1961) Ion-solvent interactions. I. Partial molal volumes of ions in aqueous solutions. II. Internal pressure and electrostriction of aqueous solutions of electrolytes. J Phys Chem 65:740–744

    Article  CAS  Google Scholar 

  30. Marcus Y (2015) Ionic and molar volumes of room temperature ionic liquids. J Mol Liq 209:289–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marcus, Y. (2016). The Properties of Ions Constituting Ionic Liquids. In: Ionic Liquid Properties. Springer, Cham. https://doi.org/10.1007/978-3-319-30313-0_2

Download citation

Publish with us

Policies and ethics