Point-Counting Method for Embarrassingly Parallel Evaluation in Secure Computation

  • Toomas KripsEmail author
  • Jan Willemson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9482)


In this paper we propose an embarrassingly parallel method for use in secure computation. The method can be used for a special class of functions over real numbers - namely, for functions f for which there exist functions g and h such that \(g(f(x),x)=h(x)\) and \(g(\cdot ,x)\) is monotonous. These functions include \(f(x)=\frac{1}{x}\) and \(f(x)=\sqrt{x}\), but also the logarithm function or any function that can be represented as finding a root of a polynomial with secret coefficients and a sufficiently low rank. The method relies on counting techniques rather than evaluation of series, allowing the result to be obtained using less rounds of computations with the price of more communication in one round. Since the complexity of oblivious computing methods (like secret-shared multi-party computations (SMC)) is largely determined by the round complexity, this approach has a potential to give better performance/precision ratio compared to series-based approaches. We have implemented the method for several functions and benchmarked them using Sharemind SMC engine.


Computable Function Binary Logarithm Vector Size Communication Round Security Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point numbers. In: NDSS (2013)Google Scholar
  2. 2.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418 (2012)CrossRefGoogle Scholar
  4. 4.
    Catrina, O., Dragulin, C.: Multiparty computation of fixed-point multiplication and reciprocal. In: 20th International Workshop on Database and Expert Systems Application, DEXA 2009, pp. 107–111 (2009)Google Scholar
  5. 5.
    Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178 (2009)Google Scholar
  8. 8.
    Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kamm, L.: Privacy-preserving statistical analysis using secure multi-party computation. Ph.D. thesis, University of Tartu (2015)Google Scholar
  10. 10.
    Kamm, L., Willemson, J.: Secure floating-point arithmetic and private satellite collision analysis. Cryptology ePrint Archive, Report 2013/850 (2013).
  11. 11.
    Kerschbaum, F., Schroepfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh, S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaborative supply-chain management. Computer 44(9), 38–43 (2011)CrossRefGoogle Scholar
  12. 12.
    Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers in secure multiparty computations. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 179–197. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Laur, S., Willemson, J., Zhang, B.: Round-efficient oblivious database manipulation. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 262–277. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Liedel, M.: Secure distributed computation of the square root and applications. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 277–288. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Liu, Y.-C., Chiang, Y.-T., Hsu, T.S., Liau, C.-J., Wang, D.-W.: Floating point arithmetic protocols for constructing secure data analysis application. Procedia Comput. Sci. 22, 152–161 (2013)CrossRefGoogle Scholar
  16. 16.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CyberneticaTartuEstonia
  2. 2.Institute of Computer ScienceUniversity of TartuTartuEstonia
  3. 3.STACCTartuEstonia

Personalised recommendations