Skip to main content

Comparative Study of Mesh Simplification Algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 380))

Abstract

Many applications in the field of computer graphics are becoming more complex and require more accurate simplification of the surface meshes. This need is due to reasons of rendering speed, the capacity the backup and the transmission speed 3D models over networks. We presented four basic methods for simplifying meshes that are proposed in recent years. The result obtained by the implementation of these methods will be the subject of a comparative study. This study aims to evaluate these methods in terms of preserving the topology and speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. ACM siggraph computer graphics, pp. 65–70. ACM, New York (1992)

    Google Scholar 

  2. Taubin, G., Guéziec, A., Horn, W., Lazarus, F.: Progressive forest split compression. In: Proceedings of the 25th annual conference on Computer Graphics and Interactive Techniques. ACM, New York, pp. 123–132 (1998)

    Google Scholar 

  3. Rossignac, J., Borrel, P.: Multi-resolution 3D approximations for rendering complex scenes, pp. 455–465. Springer, Heidelberg (1993)

    Google Scholar 

  4. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co. pp. 209–216 (1997)

    Google Scholar 

  5. Kanaya, T., Teshima, Y., Kobori, K.I., Nishio, K.: A topology-preserving polygonal simplification using vertex clustering. In: Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques. ACM Australasia and South East Asia, pp. 117–120 (2005)

    Google Scholar 

  6. Boubekeur, T., Alexa, M.: Mesh simplification by stochastic sampling and topological clustering. Comput. Graph. 33(3), 241–249 (2009)

    Article  Google Scholar 

  7. Li, Y., Zhu, Q.: A new mesh simplification algorithm based on quadric error metrics. In: International Conference on Advanced Computer Theory and Engineering, ICACTE’08, IEEE, pp. 528–532 (2008)

    Google Scholar 

  8. Li, G., Wang, W., Ding, G., Zou, Y., Wang, K.: The edge collapse algorithm based on the batched iteration in mesh simplification. In: IEEE/ACIS 11th International Conference on Computer and Information Science (ICIS), 20, IEEE, pp. 356–360 (2000)

    Google Scholar 

  9. Dehaemer, M.J., Zyda, M.J.: Simplification of objects rendered by polygonal approximations. Comput. Graph. 15(2), 175–184 (1991)

    Article  Google Scholar 

  10. Hinker, P., Hansen, C.: Geometric optimization. In: Proceedings of the 4th Conference on Visualization’93. IEEE Computer Society, pp. 189–195 (1993)

    Google Scholar 

  11. Kalvin, A.D, Haddad, B., Noz, M.E.: Constructing topologically connected surfaces for the comprehensive analysis of 3-D medical structures. In: Med. Imaging V. Image Process. Int. Soc. Opt. Photonics, 247–258 (1991)

    Google Scholar 

  12. Hoppe, H., Derose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, pp. 19–26 (1993)

    Google Scholar 

  13. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, pp. 99–108 (1996)

    Google Scholar 

  14. Eck, M., Derose, T., Duchamp, T., et al.: Multiresolution analysis of arbitrary meshes. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, pp. 173–182 (1995)

    Google Scholar 

  15. Wang, W., Zhang, Y.: Wavelets-based NURBS simplification and fairing. Comput. Methods Appl. Mech. Eng. 199(5), 290–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Turk, G.: Re-tiling polygonal surfaces. ACM SIGGRAPH Comput. Graph. 26(2), 55–64 (1992)

    Article  Google Scholar 

  17. Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Wright, W.: Simplification envelopes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. ACM, New York, pp. 119–128 (1996)

    Google Scholar 

  18. Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multiresolution decimation based on global error. Visual Comput. 13(5), 228–246 (1997)

    Article  Google Scholar 

  19. Mocanu, B., Tapu, R., Petrescu, T., Tapu, E.: An experimental evaluation of 3D mesh decimation techniques. In: 10th International Symposium on Signals, Circuits and Systems (ISSCS), IEEE, pp. 1–4 (2011)

    Google Scholar 

  20. Cohen, A., Dyn, N., Hecht, F., Mirebeau, J.M.: Adaptive multiresolution analysis based on anisotropic triangulations. Math. Comput. 81(278), 789–810 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ciampalini, A., Cignoni, P., Montani, C., Scopigno, R.: Multiresolution decimation based on global error. Visual Comput. 13(5), 228–246 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderazzak Taime .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Taime, A., Saaidi, A., Satori, K. (2016). Comparative Study of Mesh Simplification Algorithms. In: El Oualkadi, A., Choubani, F., El Moussati, A. (eds) Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015. Lecture Notes in Electrical Engineering, vol 380. Springer, Cham. https://doi.org/10.1007/978-3-319-30301-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30301-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30299-7

  • Online ISBN: 978-3-319-30301-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics