Skip to main content

Unequal Intervals

  • Chapter
  • First Online:
Digital Simulation in Electrochemistry

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

In the preceding chapters, a grid with equal intervals in both time and space was assumed (Fig. 1.1, page 3). There are several reasons for deviating from equal space intervals. Firstly, one wants both to minimise the number of points over the concentration profile and, at the same time, to have close spacing near the electrode. Secondly, in some simulations, there arise sharp concentration changes somewhere in the diffusion space, usually adjacent to the electrode. One then wants to have close spacing in such regions in order to be able to simulate concentration changes at all. This points to adaptive techniques; but first the simpler fixed unequal grid techniques will be dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noye J (1982) Finite difference methods for partial differential equations. In: Noye J (ed) Proceedings of the 1981 conference on the numerical solution of partial differential equations, Queen’s College, Melbourne, Australia. North Holland, Amsterdam, pp 3–137

    Google Scholar 

  2. Hunter IC, Jones IP (1981) Numerical experiments on the effects of strong grid stretching in finite difference calculations. Technical Report AERE R-10301, United Kingdom Atomic Energy Authority, Harwell

    Google Scholar 

  3. Crowder HJ, Dalton C (1971) Errors in the use of nonuniform mesh systems. J Comput Phys 7:32–45

    Article  Google Scholar 

  4. Kálnay de Rivas E (1972) On the use of nonuniform grids in finite-difference equations. J Comput Phys 10:202–210

    Article  Google Scholar 

  5. Rudolph M (2002) Digital simulation on unequally spaced grids. Part 1. Critical remarks on using the point method by discretisation on a transformed grid. J Electroanal Chem 529:97–108

    Article  CAS  Google Scholar 

  6. Joslin T, Pletcher D (1974) The digital simulation of electrode processes. Procedures for conserving computer time. J Electroanal Chem 49:171–186

    CAS  Google Scholar 

  7. Seeber R, Stefani S (1981) Explicit finite difference method in simulating electrode processes. Anal Chem 53:1011–1016

    Article  CAS  Google Scholar 

  8. Feldberg SW (1981) Optimization of explicit finite-difference simulation of electrochemical phenomena utilizing an exponentially expanded space grid. Refinement of the Joslin-Pletcher algorithm. J Electroanal Chem 127:1–10

    Article  CAS  Google Scholar 

  9. Bieniasz LK (1994) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 2. An improved finite-difference adaptive moving grid technique for fast homogeneous reaction-diffusion problems with reaction layers at the electrodes. J Electroanal Chem 374:1–22

    Article  CAS  Google Scholar 

  10. Bieniasz LK (1999) Finite-difference electrochemical kinetic simulations using the Rosenbrock time integration scheme. J Electroanal Chem 469:97–115

    Article  CAS  Google Scholar 

  11. Rudolph M (2003) Digital simulations on unequally spaced grids. Part 2. Using the box method by discretisation on a transformed equally spaced grid. J Electroanal Chem 543:23–39

    Article  CAS  Google Scholar 

  12. Rudolph M (2003) Reply to L.K. Bieniasz’s comments on my paper [J Electroanal Chem 529:97 (2002)]. J Electroanal Chem 558:171–176

    Article  CAS  Google Scholar 

  13. Bieniasz LK (2003) Comments on the paper by M. Rudolph, entitled “Digital simulations on unequally spaced grids. Part 1. Critical remarks on using the point method by discretisation on a transformed grid” [J Electroanal Chem 529:97 (2002) ]. J Electroanal Chem 558:167–170

    Article  CAS  Google Scholar 

  14. Cheney W, Kincaid D (1985) Numerical mathematics and computing. Brooks/Cole, Belmont, CA

    Google Scholar 

  15. Gerald CF (1978) Applied numerical analysis, 2nd edn. Addison–Wesley, Reading, MA

    Google Scholar 

  16. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in fortran. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  17. Pao YH, Daugherty RJ (1969) Time-dependent viscous incompressible flow past a finite flat plate. Technical Report Rept. DI-82-0822, Boeing Sci. Res. Lab.

    Google Scholar 

  18. Britz D, Østerby O, Strutwolf J (2012) Minimum grid digital simulation of chronoamperometry at a disk electrode. Electrochim Acta 78:365–376

    Article  CAS  Google Scholar 

  19. Martínez-Ortiz F, Zoroa N, Laborda E, Molina A (2016) Brute force (or not so brute) digital simulation in electrochemistry revisited. Chem Phys Lett 643:71–76. Supplementary material in the form of C++ programs

    Google Scholar 

  20. Sundqvist H, Veronis G (1970) A simple finite-difference grid with non-constant intervals. Tellus 22:26–31

    Google Scholar 

  21. Saul’yev VK (1964) Integration of equations of parabolic type by the method of nets. Pergamon Press, New York

    Google Scholar 

  22. Martínez-Ortiz F, Zoroa N, Molina Á, Serna C, Laborda E (2009) Electrochemical digital simulations with an exponentially expanding grid: general expressions for higher order approximations to spatial derivatives. The special case of four-point formulas and their application to multipulse techniques in planar and any size spherical electrodes. Electrochim Acta 54:1042–1055

    Article  Google Scholar 

  23. Britz D, Strutwolf J (2014) Several ways to simulate time dependent liquid junction potentials by finite differences. Electrochim Acta 137:328–335

    Article  CAS  Google Scholar 

  24. Britz D, Strutwolf J (2015) Digital simulation of chronoamperometry at a disk electrode under a flat polymer film containing an enzyme. Electrochim Acta 152:302–307

    Article  CAS  Google Scholar 

  25. Fornberg B (1988) Generation of finite difference formulas on arbitrarily spaced grids. Math Comput 51:699–706

    Article  Google Scholar 

  26. Rudolph M, Reddy DP, Feldberg SW (1994) A simulator for cyclic voltammetry responses. Anal Chem 66:589A–600A

    Article  CAS  Google Scholar 

  27. Flanagan JB, Takahashi K, Anson FC (1977) Reactant adsorption in differential pulse polarography. Effects of adsorptive depletion of reactant, nonlinear adsorption isotherms and uncompensated resistance. J Electroanal Chem 81:261–273

    Article  CAS  Google Scholar 

  28. Dillard JW, Turner JA, Osteryoung RA (1977) Digital simulation of differential pulse polarography with incremental time change. Anal Chem 49:1246–1250

    Article  CAS  Google Scholar 

  29. Nikolić S (1983) Digitalna simulacija elektrodnih reakcija za pulsnu polarografiju i srodne tehnike. Master’s thesis, Zagreb University

    Google Scholar 

  30. Klymenko OV, Evans RG, Hardacre C, Svir IB, Compton RG (2004) Double potential step chronoamperometry at microdisk electrodes: simulating the case of unequal diffusion coefficients. J Electroanal Chem 571:211–221

    Article  CAS  Google Scholar 

  31. Pearson CE (1965) Impulsive end condition for diffusion equation. Math Comput 19:570–576

    Article  Google Scholar 

  32. Britz D, Østerby O, Strutwolf J (2003) Damping of Crank-Nicolson error oscillations. Comput Biol Chem 27:253–263

    Article  CAS  Google Scholar 

  33. Østerby O (2003) Five ways of reducing the Crank-Nicolson oscillations. BIT Numer Math 43:811–822

    Article  Google Scholar 

  34. Peaceman DW, Rachford HH (1955) The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math 3:28–41

    Article  Google Scholar 

  35. Britz D, Oldham KB, Østerby O (2009) Strategies for damping the oscillations of the alternating direction implicit method of simulation of diffusion-limited chronoamperometry at disk electrodes. Electrochimica Acta 54:4822–4828

    Article  CAS  Google Scholar 

  36. Feldberg SW, Goldstein CI (1995) Examination of the behavior of the fully implicit finite-difference algorithm with the Richtmyer modification: behavior with an exponentially expanding time grid. J Electroanal Chem 397:1–10

    Article  Google Scholar 

  37. Lavagnini I, Pastore P, Magno F, Amatore CA (1991) Performance of a numerical method based on the hopscotch algorithm and on an oblate spheroidal space coordinate- expanding time grid for simulation of voltammetric curves at an inlaid disk microelectrode. J Electroanal Chem 316:37–47

    Article  CAS  Google Scholar 

  38. Amatore C, Oleinick A, Svir I (2005) Diffusion within nanometric and micrometric spherical-type domains by nanometric ring or pore active interfaces. Part 1: conformal mapping approach. J Electroanal Chem 575:103–123

    Article  CAS  Google Scholar 

  39. Barnes AS, Streeter I, Compton RG (2008) On the use of digital staircase ramps for linear sweep voltammetry at microdisc electrodes: large step potentials significantly broaden and shift voltammetric peaks. J Electroanal Chem 623:129–133

    Article  CAS  Google Scholar 

  40. Barnes EO, Lewis GEM, Dale SEC, Marken F, Compton RG (2013) Dual band electrodes in generator-collector mode: Simultaneous measurement of two species. J Electroanal Chem 703:38–44

    Article  CAS  Google Scholar 

  41. Belding SR, Baron R, Dickinson EJF, Compton RG (2009) Modeling diffusion effects for a stepwise two-electron reduction process at a microelectrode: study of the reduction of para-quaterphenyl in tetrahydrofuran and inference of fast comproportionation of the dianion with the neutral parent molecule. J Phys Chem C 113:16042–16050

    Article  CAS  Google Scholar 

  42. Eloul S, Compton RG (2014) Voltammetric sensitivity enhancement by using preconcentration adjacent to the electrode: simulation, critical evaluation, and insights. J Phys Chem C 118:24520–24532

    Article  CAS  Google Scholar 

  43. Eloul S, Compton RG (2014) Shielding of a microdisc electrode surrounded by an adsorbing surface. Chem Electrochem 1:917–924

    CAS  Google Scholar 

  44. Klymenko OV, Oleinick AI, Amatore C, Svir I (2007) Reconstruction of hydrodynamic flow profiles in a rectangular channel using electrochemical methods of analysis. Electrochim Acta 53:1100–1106

    Article  CAS  Google Scholar 

  45. Rogers EI, Huang X, Dickinson EJF, Hardacre C, Compton RG (2009) Investigating the mechanism and electrode kinetics of the oxygen/superoxide (\(\mathrm{O_{2}\vert O_{2}^{.-}}\)) couple in various room-temperature ionic liquids at gold and platinum electrodes in the temperature range 298–318 K. J Phys Chem C 113:17811–17823

    Article  CAS  Google Scholar 

  46. Streeter I, Compton RG (2007) Linear sweep voltammetry at randomly distributed arrays of microband electrodes. J Phys Chem C 111:15053–15058

    Article  CAS  Google Scholar 

  47. Svir I, Oleinick A, Yunus K, Fisher AC, Wadhawan JD, Davies TJ, Compton RG (2005) Theoretical and experimental study of the ECE mechanism at microring electrodes. J Electroanal Chem 578:289–299

    Article  CAS  Google Scholar 

  48. Molina A, Gonzalez J, Barnes EO, Compton RG (2014) Simple analytical equations for the current-potential curves at microelectrodes: a universal approach. J Phys Chem C 118:346–356

    Article  CAS  Google Scholar 

  49. Molina A, Olmos J, Laborda E (2015) Reverse pulse voltammetry at spherical and disc microelectrodes: characterization of homogeneous chemical equilibria and their impact on the species diffusivities. Electrochim Acta 169:300–309

    Article  CAS  Google Scholar 

  50. Ngamchuea K, Eloul S, Tschulik K, Compton RG (2014) Planar diffusion to macro disc electrodes - what electrode size is required for the Cottrell and Randles-Sevcik equations to apply quantitatively? J Solid State Electrochem 18:3251–3257

    Article  CAS  Google Scholar 

  51. Britz D, Østerby O (1994) Some numerical investigations of the stability of electrochemical digital simulation, particularly as affected by first-order homogeneous reactions. J Electroanal Chem 368:143–147

    Article  CAS  Google Scholar 

  52. Mocak J, Feldberg SW (1994) The Richtmyer modification of the fully implicit finite difference algorithm for simulations of electrochemical problems. J Electroanal Chem 378:31–37

    Article  Google Scholar 

  53. Ablow CM, Schechter S (1978) Campylotropic coordinates. J Comput Phys 27:351–362

    Article  Google Scholar 

  54. Bieniasz LK (1994) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 4. The adaptive moving-grid solution of one-dimensional fast homogeneous reaction-diffusion problems with extremely thin reaction zones away from the electrodes. J Electroanal Chem 379:71–87

    Article  Google Scholar 

  55. Amatore C, Klymenko O, Svir I (2010) A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: application to model mechanisms. Electrochem Commun 12:1165–1169

    Article  CAS  Google Scholar 

  56. Amatore C, Klymenko O, Svir I (2010) A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: principle. Electrochem Commun 12:1170–1173

    Article  CAS  Google Scholar 

  57. Britz D (2011) The true history of adaptive grids in electrochemical simulation. Electrochim Acta 56:4420–4421

    Article  CAS  Google Scholar 

  58. Bieniasz LK (1993) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 1. Introductory exploration of the finite-difference adaptive moving grid solution of the one-dimensional fast homogeneous reaction-diffusion problem with a reaction layer. J Electroanal Chem 360:119–138

    Article  CAS  Google Scholar 

  59. Bieniasz LK (2000) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 5. A finite-difference adaptive space/time strategy based on a patch-type local uniform grid refinement, for kinetic models in one-dimensional space geometry. J Electroanal Chem 481:115–133. Corrigendum: ibid. 565:131 (2004)

    Google Scholar 

  60. Bieniasz LK (1994) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 3. An adaptive moving grid-adaptive time step strategy for problems with discontinuous boundary conditions at the electrodes. J Electroanal Chem 374:23–35

    Article  CAS  Google Scholar 

  61. Nann T (1997) Digitale Simulation in der Elektrochemie mit der Methode der Finiten Elementen. Ph.D. thesis, Albert-Ludwigs-Universität zu Freiburg im Breisgau. Publ. by Shaker Verlag, Aachen

    Google Scholar 

  62. Nann T, Heinze J (1999) Simulation in electrochemistry using the finite element method. Part 1. The algorithm. Electrochem Commun 1:289–294

    Article  CAS  Google Scholar 

  63. Harriman K, Gavaghan DJ, Houston P, Kay D, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. ECE and EC 2 E mechanisms at channel microband electrodes. Electrochem Commun 2:576–585

    Article  CAS  Google Scholar 

  64. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband electrode. Electrochem Commun 2:567–575

    Article  CAS  Google Scholar 

  65. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. Application to a simple model problem. Electrochem Commun 2:150–156

    Article  CAS  Google Scholar 

  66. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. First-order EC’ mechanism at inlaid and recessed discs. Electrochem Commun 2:163–170

    Article  CAS  Google Scholar 

  67. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. Theory. Electrochem Commun 2:157–162

    Article  CAS  Google Scholar 

  68. Ludwig K, Speiser B (2006) EChem++ - an object-oriented problem solving environment for electrochemistry: part 4. Adaptive multilevel finite elements applied to electrochemical models. Algorithm and benchmark calculations. J Electroanal Chem 588:74–87

    CAS  Google Scholar 

  69. Ludwig K, Speiser B (2007) EChem++ - An object-oriented problem solving environment for electrochemistry. Part 5. A differential-algebraic approach to the error control of adaptive algorithms. J Electroanal Chem 608:91–101

    Article  CAS  Google Scholar 

  70. Ludwig K, Morales I, Speiser B (2007) EChem++ - An object-oriented problem solving environment for electrochemistry. Part 6. Adaptive finite element simulations of controlled-current electrochemical experiments. J Electroanal Chem 608:102–110

    Article  CAS  Google Scholar 

  71. Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. SIAM, Philadelphia

    Google Scholar 

  72. Hairer E, Nørsett SP, Wanner G (1987) Solving ordinary differential equations I. Nonstiff problems. Springer, Berlin

    Book  Google Scholar 

  73. Thompson JF (1985) A survey of dynamically-adaptive grids in the numerical solution of partial differential equations. Appl Numer Math 1:3–27

    Article  Google Scholar 

  74. Blom JG, Sanz-Serna JM, Verwer JG (1988) On simple moving grid methods for one-dimensional evolutionary partial differential equations. J Comput Phys 74:191–213

    Article  Google Scholar 

  75. Dorfi EA, Drury LO (1987) Simple adaptive grids for 1-D initial value problems. J Comput Phys 69:175–195

    Article  Google Scholar 

  76. Sanz-Serna JM, Christie I (1986) A simple adaptive technique for nonlinear wave problems. J Comput Phys 67:348–360

    Article  Google Scholar 

  77. de Boor C (1974) Good approximation by splines with variable knots. II. In Watson GA (ed) Conference on the numerical solution of differential equations, Dundee, Scotland, 1973. Springer, Berlin, pp 12–20

    Google Scholar 

  78. Bieniasz LK (2000) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 6. Testing of the finite-difference patch-adaptive strategy on example models with solution difficulties at the electrodes, in one-dimensional space geometry. J Electroanal Chem 481:134–151. Corrigendum: ibid. 565:133 (2004)

    Google Scholar 

  79. Bieniasz LK (2001) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Patch-adaptive simulation of moving fronts in non-linear diffusion models of the switching of conductive polymers. Electrochem Commun 3:149–153

    Article  CAS  Google Scholar 

  80. Bieniasz LK, Bureau C (2000) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 7. Testing of the finite-difference patch-adaptive strategy on example models with moving reaction fronts, in one-dimensional space geometry. J Electroanal Chem 481:152–167. Corrigendum: ibid. 565:135 (2004)

    Google Scholar 

  81. Douglas J Jr, Gallie TM Jr (1955) Variable time steps in the solution of the heat flow equation by a difference equation. Proc Am Math Soc 6:787–793

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Britz, D., Strutwolf, J. (2016). Unequal Intervals. In: Digital Simulation in Electrochemistry. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30292-8_7

Download citation

Publish with us

Policies and ethics