Skip to main content

Ordinary Differential Equations

  • Chapter
  • First Online:
Digital Simulation in Electrochemistry

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1604 Accesses

Abstract

In this chapter, the numerical solution of ordinary differential equations (odes) will be described. There is a direct connection between this area and that of partial differential equations (pdes), as noted in, for example, [1]. The ode field is large; but here we restrict ourselves to those techniques that appear again in the pde field. Readers wishing greater depth than is presented here can find it in the great number of texts on the subject, such as the classics by Lapidus and Seinfeld [2], Gear [3], Jain [4] or the very detailed volumes by Hairer et al. [5, 6]. There is a very clear chapter in Gerald [7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verwer JG, Sanz-Serna JM (1984) Convergence of method of lines approximations to partial differential equations. Computing 33:297–313

    Article  Google Scholar 

  2. Lapidus L, Seinfeld JH (1971) Numerical solution of ordinary differential equations. Academic Press, New York

    Google Scholar 

  3. Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  4. Jain MK (1984) Numerical solution of differential equations, 2nd edn. Wiley Eastern, New Delhi

    Google Scholar 

  5. Hairer E, Nørsett SP, Wanner G (1987) Solving ordinary differential equations I. Nonstiff problems. Springer, Berlin

    Book  Google Scholar 

  6. Hairer E, Wanner G (1991) Solving ordinary differential equations II. Stiff and differential-algebraic problems. Springer, Berlin

    Book  Google Scholar 

  7. Gerald CF (1978) Applied numerical analysis, 2nd edn. Addison–Wesley, Reading, MA

    Google Scholar 

  8. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  9. Curtiss CF, Hirschfelder JO (1952) Integration of stiff equations. Proc Natl Acad Sci USA 38:235–243

    Article  CAS  Google Scholar 

  10. Bickley WG (1941) Formulae for numerical differentiation. Math Gaz 25:19–27

    Article  Google Scholar 

  11. Britz D (1997) Stability of the backward differentiation formula (FIRM) applied to electrochemical digital simulation. Comput Chem 21:97–108. See Erratum in ibid. 22:267 (1997)

    Google Scholar 

  12. Johannsen K, Britz D (1999) Matrix stability of the backward differentiation formula in electrochemical digital simulation. Comput Chem 23:33–41

    Article  CAS  Google Scholar 

  13. Mocak J, Feldberg SW (1994) The Richtmyer modification of the fully implicit finite difference algorithm for simulations of electrochemical problems. J Electroanal Chem 378:31–37

    Article  Google Scholar 

  14. Feldberg SW, Goldstein CI (1995) Examination of the behavior of the fully implicit finite-difference algorithm with the Richtmyer modification: behavior with an exponentially expanding time grid. J Electroanal Chem 397:1–10

    Article  Google Scholar 

  15. Brenan K (1986) Numerical simulation of trajectory prescribed path control problems by the backward differentiation formulas. IEEE Trans Autom Control AC-31:266–269

    Article  Google Scholar 

  16. Henrici P (1962) Discrete variable methods in ordinary differential equations. Wiley, New York

    Google Scholar 

  17. Kimble MC, White RE (1990) A five-point finite difference method for solving parabolic differential equations. Comput Chem Eng 14:921–924

    Article  CAS  Google Scholar 

  18. Britz D (1998) Time shift artifacts and start-up protocols with the BDF method in electrochemical digital simulation. Comput Chem 22:237–243

    Article  CAS  Google Scholar 

  19. Britz D (2001) Consistency proof of Feldberg’s simple BDF start in electrochemical digital simulation. J Electroanal Chem 515:1–7

    Article  CAS  Google Scholar 

  20. Britz TJ, Britz D (2003) Mathematical proof of the consistency of Feldberg’s simple BDF start in electrochemical digital simulations. J Electroanal Chem 546:123–125

    Article  CAS  Google Scholar 

  21. Britz D, Strutwolf J, Thøgersen L (2001) Investigation of some starting protocols for BDF (FIRM) in electrochemical digital simulation. J Electroanal Chem 512:119–123

    Article  CAS  Google Scholar 

  22. Lambert JD (1972) Computational methods in ordinary differential equations. Wiley, New York

    Google Scholar 

  23. Richardson LF (1927) The deferred approach to the limit. Part I. Single lattice. Philos Trans R Soc Lond Ser A 226:299–349

    Article  Google Scholar 

  24. Lawson JD, Morris JL (1978) The extrapolation of first order methods for parabolic partial differential equations. I. SIAM J Numer Anal 15:1212–1224

    Article  Google Scholar 

  25. Gourlay AR, Morris JL (1980) The extrapolation of first order methods for parabolic partial differential equations. II. SIAM J Numer Anal 17:641–655

    Article  Google Scholar 

  26. Nguyen TV, White R (1987) A finite difference procedure for solving coupled, nonlinear elliptic partial differential equations. Comput Chem Eng 11:543–546

    Article  CAS  Google Scholar 

  27. Britz D (1999) An interesting global stabilisation of a locally short-range unstable high-order scheme for the digital simulation of the diffusion equation. Comput Chem Eng 23:297–300

    Article  CAS  Google Scholar 

  28. Richardson LF (1911) The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos Trans R Soc Lond Ser A 210:307–357

    Article  Google Scholar 

  29. Potter D (1973) Computational physics. Wiley, London

    Google Scholar 

  30. O’Brien GG, Hyman MA, Kaplan S (1950) A study of the numerical solution of partial differential equations. J Math Phys 29:223–251

    Article  Google Scholar 

  31. Balslev H, Britz D (1992) Direct digital simulation of the steady-state limiting current at a rotating disk electrode for a complex mechanism. Acta Chem Scand 46:949–955

    Article  CAS  Google Scholar 

  32. Britz D (1996) Brute force digital simulation. J Electroanal Chem 406:15–21

    Article  Google Scholar 

  33. Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential-algebraic equations. SIAM, Philadelphia

    Google Scholar 

  34. Petzold L (1983) A description of DASSL - a differential/algebraic system solver. In: Stepleman RS, Carver M, Peskin R, Ames WF, Vichnevetsky R (eds) Scientific Computing, volume 1, IMACS Trans. Sci. Comp., 10th IMACS World congress on systems simulation and scientific computation, Montreal, Canada, August 1982. North Holland, Amsterdam, pp 65–68

    Google Scholar 

  35. Rosenbrock H (1962/3) Some general implicit processes for the numerical solution of differential equations. Comput J 5:329–300

    Google Scholar 

  36. Lang J (1995) Two-dimensional fully adaptive solutions of reaction-diffusion equations. Appl Numer Math 18:223–240

    Article  Google Scholar 

  37. Lang J (1996) High-resolution self-adaptive computations on chemical reaction-diffusion problems with internal boundaries. Chem Eng Sci 51:1055–1070

    Article  CAS  Google Scholar 

  38. Lang J (2001) Adaptive multilevel solution of nonlinear parabolic PDE systems. Springer, Berlin

    Book  Google Scholar 

  39. Roche M (1988) Rosenbrock methods for differential algebraic equations. Numer Math 52:45–63

    Article  Google Scholar 

  40. Bieniasz LK (1999) Finite-difference electrochemical kinetic simulations using the Rosenbrock time integration scheme. J Electroanal Chem 469:97–115

    Article  CAS  Google Scholar 

  41. Bieniasz LK, Britz D (2001) Chronopotentiometry at a microband electrode: simulation study using a Rosenbrock time integration scheme for differential-algebraic equations and a direct sparse solver. J Electroanal Chem 503:141–152

    Article  CAS  Google Scholar 

  42. Smith GD (1985) Numerical solution of partial differential equations, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  43. Lawson JD (1967) Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J Numer Anal 4:372–380

    Article  Google Scholar 

  44. Frobenius G (1881) Ueber Relationen zwischen den Näherungsbrüchen von Potenzreihen. J Reine Angew Math 90:1–17

    Google Scholar 

  45. Gragg WB (1972) The Padé table and its relation to certain algorithms of numerical analysis. SIAM Rev 14:1–62

    Article  Google Scholar 

  46. Padé H (1892) Sur la représentation approchée d’une fonction par des fractions rationelles. Ph.D. thesis, École Nor. (3), Paris. Supplement

    Google Scholar 

  47. Brezinski C (1991) History of continued fractions and Padé approximants. Springer, Berlin

    Book  Google Scholar 

  48. Malvandi A, Ganji DD (2013) A general mathematical expression of amperometric enzyme kinetics using He’s variational iteration method with Padé approximation. J Electroanal Chem 711:32–37

    Article  CAS  Google Scholar 

  49. Rajendran L, Sangaranarayanan MV (1995) A two-point Padé approximation for the non-steady state chronoamperometric current at ultramicrodisc electrodes. J Electroanal Chem 392:75–78

    Article  Google Scholar 

  50. Rajendran L (2000) Padé approximation of ECE and DISP processes at channel electrodes. Electrochem Commun 2:186–189

    Article  CAS  Google Scholar 

  51. Rajendran L (2000) Padé approximation of EC’ processes at channel electrodes. J Electroanal Chem 487:72–74

    Article  CAS  Google Scholar 

  52. Rajendran L (2006) Two-point Padé approximation of mass transfer rate at microdisk electrodes in a channel flow for all Péclet numbers. Electrochim Acta 51:5407–5411

    Article  CAS  Google Scholar 

  53. Senthamarai R, Rajendran L (2008) Analytical expression for transient chronoamperometric current at ultramicroband electrode. Russ J Electrochem 44:1156–1161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Britz, D., Strutwolf, J. (2016). Ordinary Differential Equations. In: Digital Simulation in Electrochemistry. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30292-8_4

Download citation

Publish with us

Policies and ethics