Skip to main content

Approximations to Derivatives

  • Chapter
  • First Online:
Digital Simulation in Electrochemistry

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1621 Accesses

Abstract

In this chapter, all the discrete approximations required for simulation are established, that is, for first and second derivatives, both central and asymmetric forms, equally or randomly spaced points, and for a range of numbers of points used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collatz L (1935) Das Differenzverfahren mit höheren Approximationen für lineare Differentialgleichungen. Schriften Math Sem Inst Ang Math Univ Berlin 3:1–35

    Google Scholar 

  2. Collatz L (1960) Numerische Behandlung von Differentialgleichungen. Springer, Heidelberg

    Google Scholar 

  3. Bickley WG (1941) Formulae for numerical differentiation. Math Gaz 25:19–27

    Article  Google Scholar 

  4. Randles JEB (1948) A cathode-ray polarograph. Part II - the current-voltage curves. Trans Faraday Soc 44:327–338

    Article  CAS  Google Scholar 

  5. Eyres NR, Hartree DR, Ingham J, Jackson R, Sarjant RJ, Wagstaff JB (1946) The calculation of variable heat flow in solids. Philos Trans R Soc Lond A 240:1–57

    Article  Google Scholar 

  6. Heinze J, Störzbach M, Mortensen J (1984) Digital simulation of cyclic voltammetric curves by the implicit Crank-Nicolson scheme. J Electroanal Chem 165:61–70

    Article  CAS  Google Scholar 

  7. Newman J (1991) Electrochemical systems, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  8. Britz D (1987) Investigation of the relative merit of some n-point current approximations in digital simulations. Application to an improved algorithm for quasireversible systems. Anal Chim Acta 193:277–285

    Article  CAS  Google Scholar 

  9. Bieniasz LK (1999) Finite-difference electrochemical kinetic simulations using the Rosenbrock time integration scheme. J Electroanal Chem 469:97–115

    Article  CAS  Google Scholar 

  10. Fornberg B (1988) Generation of finite difference formulas on arbitrarily spaced grids. Math Comput 51:699–706

    Article  Google Scholar 

  11. Bieniasz LK (2003) High order accurate one-sided finite-difference approximations to gradients at the boundaries, for the simulation of electrochemical reaction-diffusion problems in one-dimensional space geometry. Comput Biol Chem 27:315–325

    Article  CAS  Google Scholar 

  12. Bieniasz LK (2004) Improving the accuracy of the spatial discretisation in finite-difference electrochemical kinetic simulations, by means of the extended Numerov method. J Comput Chem 25:1075–1083

    Article  CAS  Google Scholar 

  13. Kopal Z (1955) Numerical analysis. Chapman & Hall, London

    Google Scholar 

  14. Noumerov BV (1924) A method of extrapolation of perturbations. Mon Not R Astron Soc 84:592–601

    Article  Google Scholar 

  15. Bieniasz LK (2007) A fourth-order accurate, three-point compact approximation of the boundary gradient, for electrochemical simulations by the extended Numerov method. Electrochim Acta 52:2203–2209

    Article  CAS  Google Scholar 

  16. Bieniasz LK (2007) A set of compact finite-difference approximations to first and second derivatives, related to the extended Numerov method of Chawla on nonuniform grids. Computing 81:77–89

    Article  Google Scholar 

  17. Kimble MC, White RE (1990) A five-point finite difference method for solving parabolic differential equations. Comput Chem Eng 14:921–924

    Article  CAS  Google Scholar 

  18. Britz D, Strutwolf J (2000) Higher-order spatial discretisations in electrochemical digital simulation. 1. Combination with the BDF algorithm. Comput Chem 24:673–684

    Article  CAS  Google Scholar 

  19. Strutwolf J, Britz D (2001) Use of high-order discretisations in digital simulation. 2. Combination with the extrapolation algorithm. Comput Chem 25:511–520

    Article  CAS  Google Scholar 

  20. Noye J (1984) Finite difference techniques for partial differential equations. In: Noye J (ed) Computational techniques for differential equations. Elsevier, Amsterdam, pp 95–354

    Chapter  Google Scholar 

  21. Rudolph M (2002) Digital simulation on unequally spaced grids. Part 1. Critical remarks on using the point method by discretisation on a transformed grid. J Electroanal Chem 529:97–108

    Article  CAS  Google Scholar 

  22. Crowder HJ, Dalton C (1971) Errors in the use of nonuniform mesh systems. J Comput Phys 7:32–45

    Article  Google Scholar 

  23. Kálnay de Rivas E (1972) On the use of nonuniform grids in finite-difference equations. J Comput Phys 10:202–210

    Article  Google Scholar 

  24. Noye J (1982) Finite difference methods for partial differential equations. In: Noye J (ed) Proceedings of the 1981 conference on the numerical solution of partial differential equations, Queen’s College, Melbourne, Australia. North Holland, Amsterdam, pp 3–137

    Google Scholar 

  25. Britz D, Strutwolf J (2003) Higher-order spatial discretisations in electrochemical digital simulation. Part 4. Discretisation on an arbitrarily spaced grid. Comput Biol Chem 27:327—337

    Article  CAS  Google Scholar 

  26. Gavaghan DJ (1998) An exponentially expanding mesh ideally suited to the fast and efficient simulation of diffusion processes at microdisc electrodes. 1. Derivation of the mesh. J Electroanal Chem 456:1–12

    Article  CAS  Google Scholar 

  27. Bieniasz LK (1993) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 1. Introductory exploration of the finite-difference adaptive moving grid solution of the one-dimensional fast homogeneous reaction-diffusion problem with a reaction layer. J Electroanal Chem 360:119–138

    Article  CAS  Google Scholar 

  28. Blom JG, Sanz-Serna JM, Verwer JG (1988) On simple moving grid methods for one-dimensional evolutionary partial differential equations. J Comput Phys 74:191–213

    Article  Google Scholar 

  29. Bieniasz LK (1994) Use of dynamically adaptive grid techniques for the solution of electrochemical kinetic equations. Part 2. An improved finite-difference adaptive moving grid technique for fast homogeneous reaction-diffusion problems with reaction layers at the electrodes. J Electroanal Chem 374:1–22

    Article  CAS  Google Scholar 

  30. Seeber R, Stefani S (1981) Explicit finite difference method in simulating electrode processes. Anal Chem 53:1011–1016

    Article  CAS  Google Scholar 

  31. Feldberg SW (1981) Optimization of explicit finite-difference simulation of electrochemical phenomena utilizing an exponentially expanded space grid. Refinement of the Joslin-Pletcher algorithm. J Electroanal Chem 127:1–10

    Article  CAS  Google Scholar 

  32. Martínez-Ortiz F (2005) On the use of a real time application interface under Linux in the electrochemistry laboratory. Application to chronopotentiometry. J Electroanal Chem 574:239–250

    Article  Google Scholar 

  33. Britz D, Østerby O, Strutwolf J (2012) Minimum grid digital simulation of chronoamperometry at a disk electrode. Electrochim Acta 78:365–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Britz, D., Strutwolf, J. (2016). Approximations to Derivatives. In: Digital Simulation in Electrochemistry. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30292-8_3

Download citation

Publish with us

Policies and ethics