Skip to main content

Adsorption

  • Chapter
  • First Online:
  • 1647 Accesses

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

In this chapter it is shown how to simulate the adsorption of a substance, not taking into account any electrochemical reactions the substance may undergo. That is, only the adsorption itself is dealt with here. In Chap. 2, Sect. 2.5, some theory is presented, laying the groundwork for the simulation. It is noted there that adsorption may be controlled by transport and the adsorption isotherm, in which case there is equilibrium at all times between the solution and surface phases; or that the adsorption step itself may limit the rate of adsorption. In this latter case, there are rate constants whose values must be known. In both cases, for isotherms more complicated than the Henry isotherm (2.103), nonlinear terms will enter the equations to be solved in a simulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rampazzo L (1969) Diffusion to a plane with adsorption according to Frumkin’s isotherm. Electrochim Acta 14:733–739

    Article  CAS  Google Scholar 

  2. Flanagan JB, Takahashi K, Anson FC (1977) Reactant adsorption in differential pulse polarography. Effects of adsorptive depletion of reactant, nonlinear adsorption isotherms and uncompensated resistance. J Electroanal Chem 81:261–273

    Article  CAS  Google Scholar 

  3. Miller R, Lunkenheimer K (1978) Zur Adsorptionskinetik an fluiden Phasen-grenzen. Eine numerische Lösung für den diffusionskontrollierten Adsorptionsvorgang. Z Phys Chem (Leipzig) 259:863–868

    CAS  Google Scholar 

  4. Miller R, Lunkenheimer K, Kretzschmar G (1979) Ein Modell für die diffusions-kinetik- kontrollierte Adsorption von Tensidgemischen an fluiden Phasengrenzen. Colloid Polym Sci 257:1118–1120

    Article  CAS  Google Scholar 

  5. Miller R, Kretzschmar G (1980) Numerische Lösung für ein gemischtes Modell der diffusions-kinetik-kontrollierten Adsorption. Colloid Polym Sci 258:85–87

    Article  CAS  Google Scholar 

  6. Miller R (1981) On the solution of diffusion controlled adsorption kinetics for any adsorption isotherms. Colloid Polym Sci 259:375–381

    Article  CAS  Google Scholar 

  7. Lovrić M, Kormorsky-Lovrić Ŝ (1981) O adsorpciji kontroliranoj difuzijom. Bull Soc Chim Beograd 46:93–98

    Google Scholar 

  8. Britz D, Heinze J, Mortensen J, Störzbach M (1988) Implicit calculation of boundary values in digital simulation applied to several types of electrochemical experiment. J Electroanal Chem 240:27–43

    Article  CAS  Google Scholar 

  9. Hsu CT, Shao MJ, Lin SY (2000) Adsorption of C 12 E 4 at the air-water interface: adsorption onto a fresh interface. Langmuir 16:3187–3194

    Article  CAS  Google Scholar 

  10. Bieniasz LK (1996) A method-oriented approach to the formulation of algorithms for electrochemical kinetic simulations. Part 2. Extension to kinetic problems characterized by the simultaneous presence of bulk and interfacial species. J Electroanal Chem 404:195–208

    Article  Google Scholar 

  11. http://www.cyf-kr.edu.pl/~nbbienia/elsim3ad.html

  12. Bieniasz LK (1992) ELSIM - a user-friendly PC program for electrochemical kinetic simulations. Version 1.0 - solution of integral equations for linear scan and cyclic voltammetry. Comput Chem 16:11–14

    Article  CAS  Google Scholar 

  13. Bieniasz LK (1993) ELSIM - a PC program for electrochemical kinetic simulations. Version 2.0 - solution of the sets of kinetic partial differential equations in one-dimensional geometry, using finite difference and orthogonal collocation methods. Comput Chem 17:355–368

    Article  CAS  Google Scholar 

  14. Bieniasz LK (1997) ELSIM - a problem-solving environment for electrochemical kinetic simulations. Version 3.0 - solution of governing equations associated with interfacial species, independent of spatial coordinates or in one-dimensional space geometry. Comput Chem 21:1–12

    Article  CAS  Google Scholar 

  15. Ludwig K, Speiser B (2007) EChem++ - an object-oriented problem solving environment for electrochemistry. Part 5. A differential-algebraic approach to the error control of adaptive algorithms. J Electroanal Chem 608:91–101

    Article  CAS  Google Scholar 

  16. Ludwig K, Morales I, Speiser B (2007) EChem++ - an object-oriented problem solving environment for electrochemistry. Part 6. Adaptive finite element simulations of controlled-current electrochemical experiments. J Electroanal Chem 608:102–110

    Article  CAS  Google Scholar 

  17. Calvente JJ, Kováčová Z (1996) Numerical simulation of desorption transients at electrodes on the basis of non-linear adsorption isotherms. J Chem Soc Faraday Trans 92:3701–3708

    Article  CAS  Google Scholar 

  18. Calvente JJ, Andreu R (2011) Accurate analytical expressions for stripping voltammetry in the Henry adsorption limit. Anal Chem 83:6401–6409

    Article  CAS  Google Scholar 

  19. Chen L, Lv C, Chen J, Bi S (2013) Numerical simulation study on cyclic reciprocal derivative chronopotentiometry of reversible electrode reaction coupled with Langmuir adsorption. Electrochim Acta 93:222–229

    Article  CAS  Google Scholar 

  20. Chevallier FG, Klymenko OV, Jiang L, Jones TGJ, Compton RG (2004) Mathematical modelling and numerical simulation of adsorption processes at microdisk electrodes. J Electroanal Chem 574:217–237

    Article  Google Scholar 

  21. Ellis JS, Strutwolf J, Arrigan DWM (2012) Finite-element simulations of the influence of pore wall adsorption on cyclic voltammetry of ion transfer across a liquid-liquid interface formed at a micropore. Phys Chem Chem Phys 14:2494–2500

    Article  CAS  Google Scholar 

  22. Engelman EE, Evans DH (1992) Explicit finite-difference digital simulation of the effects of rate-controlled product adsorption or deposition in double-potential-step chronocoulometry. J Electroanal Chem 331:739–749

    Article  CAS  Google Scholar 

  23. Fanelli N, Záliš S, Pospíšil C (1990) Monte Carlo simulations of adsorption/desorption processes related to adsorptive stripping voltammetry. J Electroanal Chem 288:263–269

    Article  CAS  Google Scholar 

  24. Fekner Z (2008) Digital simulation of cyclic chronopotentiometry and reciprocal derivative chronopotentiometry for linear adsorption systems. Collect Czechoslov Chem Commun 73:201–228

    Article  CAS  Google Scholar 

  25. Feldberg SW (1972) Digital simulation of electrochemical surface boundary phenomena. Multiple electron transfer and adsorption. In: Mattson J, Mark HB Jr, MacDonald HC Jr (eds) Computers in Chemistry and Instrumentation, vol 2. Marcel Dekker, New York, pp 185–215

    Google Scholar 

  26. Hepel T (1985) Linear potential scan voltammetry for irreversible co- adsorption of electroactive species. J Electroanal Chem 193:89–101

    Article  CAS  Google Scholar 

  27. Kirowa-Eisner E, Gepshtein R, Gileadi E (2005) Effect of diffusion in underpotential deposition: simulated and experimental results. J Electroanal Chem 583:273–285

    Article  CAS  Google Scholar 

  28. Kobayashi K (1988) Digital simulation of normal pulse polarographic adsorption waves of methyl viologen. Chem Lett 1243–1246

    Google Scholar 

  29. Kobayashi K, Minami N, Yamauchi S (1997) Digital simulation of the adsorption behavior of methyl viologen on mercury electrode. Proc Electrochem Soc 97-19:287–297

    CAS  Google Scholar 

  30. Leverenz A, Speiser B (1991) Electroanalytical simulations. Part 13. The simulation of adsorption processes at an electrode by orthogonal collocation algorithms. J Electroanal Chem 318:69–89

    Article  CAS  Google Scholar 

  31. Łobacz M, Orlik M, Stroka J, Galus Z (2002) Method of separation and determination of the characteristics of the adsorbed and nonadsorbed states of electroactive substances on electrodes. Langmuir 18:2765–2770

    Article  Google Scholar 

  32. Martinet S, Bouteillon J, Caire JP (1998) Modelling of cyclic voltammograms for two-step metal deposition on an inert electrode with adsorption. J Appl Electrochem 28:819–825

    Article  CAS  Google Scholar 

  33. Schulz C, Speiser B (1993) Electroanalytical simulations. Part 14. Simulation of Frumkin-type adsorption processes by orthogonal collocation under cyclic voltammetric conditions. J Electroanal Chem 354:255–271

    Article  CAS  Google Scholar 

  34. Juwono T, Hamad IA, Rikvold PA (2013) Effects of lateral diffusion on the dynamics of desorption. J Solid State Electrochem 17:379–384

    Article  CAS  Google Scholar 

  35. Szulborska A, Baranski A (1994) Numerical simulation of kinetically controlled electrosorption processes under cyclic voltammetric conditions. J Electroanal Chem 377:23–31

    Article  CAS  Google Scholar 

  36. Miller R (1980) Zur Adsorptionskinetik an der Oberfläche wachsender Tropfen. Colloid Polym Sci 258:179–185

    Article  CAS  Google Scholar 

  37. Koryta J (1953) Über den Einfluss der Farbstoffe der Eosin-Gruppe auf die reversible Oxydo-Reduktion an der tropfenden Quecksilberelektrode. Collect Czechoslov Chem Commun 18:206–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Britz, D., Strutwolf, J. (2016). Adsorption. In: Digital Simulation in Electrochemistry. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30292-8_10

Download citation

Publish with us

Policies and ethics