Skip to main content

Sliding Mode Controller Design for the Global Stabilization of Chaotic Systems and Its Application to Vaidyanathan Jerk System

  • Chapter
  • First Online:
Advances and Applications in Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 636))

  • 1336 Accesses

Abstract

Chaos in nonlinear dynamics occurs widely in physics, chemistry, biology, ecology, secure communications, cryptosystems and many scientific branches. Control of chaotic systems is an important research problem in chaos theory. Sliding mode control is an important method used to solve various problems in control systems engineering. In robust control systems, the sliding mode control is often adopted due to its inherent advantages of easy realization, fast response and good transient performance as well as insensitivity to parameter uncertainties and disturbance. In this work, we derive a novel sliding mode control method for the global stabilization of chaotic systems. The general control result derived using novel sliding mode control method is proved using Lyapunov stability theory. As an application of the general result, the problem of global stabilization of the Vaidyanathan jerk chaotic system (2015) is studied and a new sliding mode controller is derived. The Lyapunov exponents of the Vaidyanathan jerk system are obtained as \(L_1 = 0.12476\), \(L_2 = 0\) and \(L_3 = -1.12451\). Since the Vaidyanathan jerk system has a positive Lyapunov exponent, it is chaotic. The Maximal Lyapunov Exponent (MLE) of the Vaidyanathan jerk system is given by \(L_1 = 0.12476\). Also, the Kaplan–Yorke dimension of the Vaidyanathan jerk system is obtained as \(D_{KY} = 2.11095\). Numerical simulations using MATLAB have been shown to depict the phase portraits of the Vaidyanathan jerk system and the sliding mode controller design for the global stabilization of the Vaidyanathan jerk system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Commun Math Phys 79(4):573–576

    Article  MathSciNet  MATH  Google Scholar 

  2. Azar AT (2010) Fuzzy systems. IN-TECH, Vienna

    Google Scholar 

  3. Azar AT (2012) Overview of type-2 fuzzy logic systems. Int J Fuzzy Syst Appl 2(4):1–28

    Article  MathSciNet  Google Scholar 

  4. Azar AT, Serrano FE (2014) Robust IMC-PID tuning for cascade control systems with gain and phase margin specifications. Neural Comput Appl 25(5):983–995

    Article  Google Scholar 

  5. Azar AT, Serrano FE (2015) Adaptive sliding mode control of the Furuta pendulum. In: Azar AT, Zhu Q (eds) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Berlin, pp 1–42

    Google Scholar 

  6. Azar AT, Serrano FE (2015) Deadbeat control for multivariable systems with time varying delays. In: Azar AT, Vaidyanathan S (eds) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Berlin, pp 97–132

    Google Scholar 

  7. Azar AT, Serrano FE (2015) Design and modeling of anti wind up PID controllers. In: Zhu Q, Azar AT (eds) Complex system modelling and control through intelligent soft computations, studies in fuzziness and soft computing, vol 319. Springer, Cham, pp 1–44

    Google Scholar 

  8. Azar AT, Serrano FE (2015) Stabilizatoin and control of mechanical systems with backlash. In: Vaidyanathan S, Azar AT (eds) Handbook of research on advanced intelligent control engineering and automation, Advances in Computational Intelligence and Robotics (ACIR). IGI-Global, Hershey, pp 1–60

    Google Scholar 

  9. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, vol 581. Springer, Berlin

    Google Scholar 

  10. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, studies in computational intelligence, vol 581. Springer, Berlin

    Google Scholar 

  11. Azar AT, Vaidyanathan S (2015) Computational intelligence applications in modeling and control, studies in computational intelligence, vol 575. Springer, Cham

    Google Scholar 

  12. Azar AT, Vaidyanathan S (2015) Handbook of research on advanced intelligent control engineering and automation., Advances in computational intelligence and robotics (ACIR)IGI-Global, Pennsylvania

    Book  Google Scholar 

  13. Azar AT, Zhu Q (2015) Advances and applications in sliding mode control systems, studies in computational intelligence, vol 576. Springer, Cham

    MATH  Google Scholar 

  14. Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240

    Google Scholar 

  15. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(7):1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen HK, Lee CI (2004) Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 21(4):957–965

    Article  MathSciNet  MATH  Google Scholar 

  17. Feki M (2003) An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18(1):141–148

    Article  MathSciNet  MATH  Google Scholar 

  18. Gibson WT, Wilson WG (2013) Individual-based chaos: Extensions of the discrete logistic model. J Theor Biol 339:84–92

    Article  MathSciNet  Google Scholar 

  19. Guégan D (2009) Chaos in economics and finance. Annu Rev Control 33(1):89–93

    Article  Google Scholar 

  20. Huang X, Zhao Z, Wang Z, Li Y (2012) Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 94:13–21

    Article  Google Scholar 

  21. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  22. Kengne J, Chedjou JC, Kenne G, Kyamakya K (2012) Dynamical properties and chaos synchronization of improved Colpitts oscillators. Commun Nonlinear Sci Numer Simul 17(7):2914–2923

    Article  MathSciNet  Google Scholar 

  23. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  24. Lang J (2015) Color image encryption based on color blend and chaos permutation in the reality-preserving multiple-parameter fractional Fourier transform domain. Opt Commun 338:181–192

    Article  Google Scholar 

  25. Li D (2008) A three-scroll chaotic attractor. Phys Lett A 372(4):387–393

    Article  MathSciNet  MATH  Google Scholar 

  26. Li N, Pan W, Yan L, Luo B, Zou X (2014) Enhanced chaos synchronization and communication in cascade-coupled semiconductor ring lasers. Commun Nonlinear Sci Numer Simul 19(6):1874–1883

    Article  Google Scholar 

  27. Li Z, Chen G (2006) Integration of fuzzy logic and chaos theory, studies in fuzziness and soft computing, vol 187. Springer, Berlin

    Book  Google Scholar 

  28. Lian S, Chen X (2011) Traceable content protection based on chaos and neural networks. Appl Soft Comput 11(7):4293–4301

    Article  Google Scholar 

  29. Liu C, Liu T, Liu L, Liu K (2004) A new chaotic attractor. Chaos Solitions Fractals 22(5):1031–1038

    Google Scholar 

  30. Lorenz EN (1963) Deterministic periodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  31. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifurc Chaos 12(3):659–661

    Article  MathSciNet  MATH  Google Scholar 

  32. Mondal S, Mahanta C (2014) Adaptive second order terminal sliding mode controller for robotic manipulators. J Frankl Inst 351(4):2356–2377

    Article  MathSciNet  Google Scholar 

  33. Murali K, Lakshmanan M (1998) Secure communication using a compound signal from generalized chaotic systems. Phys Lett A 241(6):303–310

    Article  MATH  Google Scholar 

  34. Nehmzow U, Walker K (2005) Quantitative description of robot-environment interaction using chaos theory. Robot Auton Syst 53(3–4):177–193

    Article  Google Scholar 

  35. Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096

    Article  Google Scholar 

  36. Pham VT, Vaidyanathan S, Volos CK, Jafari S (2015a) Hidden attractors in a chaotic system with an exponential nonlinear term. Eur Phys J Spec Top 224(8):1507–1517

    Article  Google Scholar 

  37. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015b) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214

    Google Scholar 

  38. Qu Z (2011) Chaos in the genesis and maintenance of cardiac arrhythmias. Prog Biophysi Mol Biol 105(3):247–257

    Article  Google Scholar 

  39. Rhouma R, Belghith S (2011) Cryptoanalysis of a chaos based cryptosystem on DSP. Commun Nonlinear Sci Numer Simul 16(2):876–884

    Article  MathSciNet  MATH  Google Scholar 

  40. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  41. Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6

    Google Scholar 

  42. Sharma A, Patidar V, Purohit G, Sud KK (2012) Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun Nonlinear Sci Numer Simul 17(6):2254–2269

    Article  MathSciNet  Google Scholar 

  43. Sprott JC (1994) Some simple chaotic flows. Phys Rev E 50(2):647–650

    Article  MathSciNet  Google Scholar 

  44. Sprott JC (2004) Competition with evolution in ecology and finance. Phys Lett A 325(5–6):329–333

    Google Scholar 

  45. Suérez I (1999) Mastering chaos in ecology. Ecol Model 117(2–3):305–314

    Article  Google Scholar 

  46. Sundarapandian V (2003) A relation between the output regulation and the observer design for nonlinear systems. Appl Math Lett 16:235–242

    Article  MathSciNet  MATH  Google Scholar 

  47. Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42:289–299

    MathSciNet  MATH  Google Scholar 

  48. Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52

    Google Scholar 

  49. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comput Model 55(7–8):1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  50. Sundarapandian V, Sivaperumal S (2012) Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int J Soft Comput 6(5):224–231

    Article  Google Scholar 

  51. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos Solitons Fractals 36:1315–1319

    Google Scholar 

  52. Usama M, Khan MK, Alghatbar K, Lee C (2010) Chaos-based secure satellite imagery cryptosystem. Comput Math Appl 60(2):326–337

    Article  MathSciNet  MATH  Google Scholar 

  53. Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MathSciNet  MATH  Google Scholar 

  54. Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans Ind Electron 40(1):23–36

    Article  Google Scholar 

  55. Vaidyanathan S (2011) Output regulation of Arneodo–Coullet chaotic system. Commun Comput Inf Sci 133:98–107

    Article  Google Scholar 

  56. Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Comput Inf Sci 198:1–9

    Article  Google Scholar 

  57. Vaidyanathan S (2012) Analysis and synchronization of the hyperchaotic Yujun systems via sliding mode control. Adv Intell Syst Comput 176:329–337

    Article  Google Scholar 

  58. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123

    Google Scholar 

  59. Vaidyanathan S (2012) Sliding control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 5(1):15–20

    MathSciNet  Google Scholar 

  60. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143

    MATH  Google Scholar 

  61. Vaidyanathan S (2013) A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. Int J Control Theory Appl 6:97–109

    Google Scholar 

  62. Vaidyanathan S (2013) Adaptive control and synchronization design for the Lu-Xiao chaotic system. Lect Notes Electr Eng 131:319–327

    Article  Google Scholar 

  63. Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65

    MathSciNet  Google Scholar 

  64. Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Adv Intell Syst Comput 177:1–10

    Article  Google Scholar 

  65. Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226

    MATH  Google Scholar 

  66. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J Spec Top 223(8):1519–1529

    Article  Google Scholar 

  67. Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Model Identif Control 22(1):41–53

    Article  Google Scholar 

  68. Vaidyanathan S (2014) Generalized projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Model Identif Control 22(3):207–217

    Article  MathSciNet  Google Scholar 

  69. Vaidyanathan S (2015) 3-cells Cellular Neural Network (CNN) attractor and its adaptive biological control. Int J PharmTech Res 8(4):632–640

    Google Scholar 

  70. Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115

    Google Scholar 

  71. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its adaptive control. Int J ChemTech Res 8(7):146–158

    MathSciNet  Google Scholar 

  72. Vaidyanathan S (2015) Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(2):256–261

    Google Scholar 

  73. Vaidyanathan S (2015) Adaptive biological control of generalized Lotka–Volterra three-species biological system. Int J PharmTech Res 8(4):622–631

    Google Scholar 

  74. Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(5):964–973

    Google Scholar 

  75. Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J PharmTech Res 8(3):377–382

    Google Scholar 

  76. Vaidyanathan S (2015) Adaptive control of the FitzHugh–Nagumo chaotic neuron model. Int J PharmTech Res 8(6):117–127

    Google Scholar 

  77. Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J ChemTech Res 8(2):612–621

    Google Scholar 

  78. Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka–Volterra three-species biological systems. Int J PharmTech Res 8(5):928–937

    Google Scholar 

  79. Vaidyanathan S (2015) Adaptive synchronization of novel 3-D chemical chaotic reactor systems. Int J ChemTech Res 8(7):159–171

    MathSciNet  Google Scholar 

  80. Vaidyanathan S (2015) Analysis, control, and synchronization of a 3-D novel jerk chaotic system with two quadratic nonlinearities. Kyungpook Math J 55:563–586

    Article  MathSciNet  MATH  Google Scholar 

  81. Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Model Identif Control 23(2):164–172

    Article  Google Scholar 

  82. Vaidyanathan S (2015) Anti-synchronization of brusselator chemical reaction systems via adaptive control. Int J ChemTech Res 8(6):759–768

    Google Scholar 

  83. Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff–Shaw strange chaotic attractor. Int J PharmTech Res 8(5):956–963

    Google Scholar 

  84. Vaidyanathan S (2015) Chaos in neurons and synchronization of Birkhoff–Shaw strange chaotic attractors via adaptive control. Int J PharmTech Res 8(6):1–11

    Google Scholar 

  85. Vaidyanathan S (2015) Coleman–Gomatam logarithmic competitive biology models and their ecological monitoring. Int J PharmTech Res 8(6):94–105

    Google Scholar 

  86. Vaidyanathan S (2015) Dynamics and control of brusselator chemical reaction. Int J ChemTech Res 8(6):740–749

    Google Scholar 

  87. Vaidyanathan S (2015) Dynamics and control of tokamak system with symmetric and magnetically confined plasma. Int J ChemTech Res 8(6):795–803

    Google Scholar 

  88. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J ChemTech Res 8(7):209–221

    MathSciNet  Google Scholar 

  89. Vaidyanathan S (2015) Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. Int J PharmTech Res 8(6):156–166

    Google Scholar 

  90. Vaidyanathan S (2015) Hyperchaos, qualitative analysis, control and synchronisation of a ten-term 4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. Int J Model Identif Control 23:380–392

    Article  Google Scholar 

  91. Vaidyanathan S (2015) Lotka–Volterra population biology models with negative feedback and their ecological monitoring. Int J PharmTech Res 8(5):974–981

    Google Scholar 

  92. Vaidyanathan S (2015) Lotka–Volterra two species competitive biology models and their ecological monitoring. Int J PharmTech Res 8(6):32–44

    Google Scholar 

  93. Vaidyanathan S (2015) Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. Int J PharmTech Res 8(6):106–116

    Google Scholar 

  94. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. Stud Comput Intell 581:3–17

    Article  Google Scholar 

  95. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos Model Control Syst Des, Stud Comput Intell, vol 581. Springer, Cham, pp 19–38

    Google Scholar 

  96. Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137

    Google Scholar 

  97. Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):52–60

    Google Scholar 

  98. Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9(3):274–279

    Article  Google Scholar 

  99. Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353

    Google Scholar 

  100. Vaidyanathan S, Volos C, Pham VT (2014a) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24:409–446

    MathSciNet  MATH  Google Scholar 

  101. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014b) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

    MathSciNet  MATH  Google Scholar 

  102. Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J Model Identif Control 23:267–277

    Article  Google Scholar 

  103. Vaidyanathan S, Pham VT, Volos CK (2015) A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur Phys J Spec Top 224:1575–1592

    Article  Google Scholar 

  104. Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141

    Google Scholar 

  105. Vaidyanathan S, Volos C, Pham VT (2015d) Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J Eng Sci Technol Rev 8:232–244

    Google Scholar 

  106. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015e) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36

    Google Scholar 

  107. Vaidyanathan S, Volos CK, Pham VT (2015f) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):174–184

    Google Scholar 

  108. Vaidyanathan S, Volos CK, Pham VT (2015g) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and Applications in Sliding Mode Control Systems, Studies in Computational Intelligence, vol 576. Springer, Cham, pp 571–590

    Google Scholar 

  109. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot Auton Syst 61(12):1314–1322

    Article  Google Scholar 

  110. Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173

    Google Scholar 

  111. Wei Z, Yang Q (2010) Anti-control of Hopf bifurcation in the new chaotic system with two stable node-foci. Appl Math Comput 217(1):422–429

    MathSciNet  MATH  Google Scholar 

  112. Witte CL, Witte MH (1991) Chaos and predicting varix hemorrhage. Med Hypotheses 36(4):312–317

    Article  MathSciNet  Google Scholar 

  113. Yuan G, Zhang X, Wang Z (2014) Generation and synchronization of feedback-induced chaos in semiconductor ring lasers by injection-locking. Optik- Int J Light Electron Opt 125(8):1950–1953

    Article  Google Scholar 

  114. Zaher AA, Abu-Rezq A (2011) On the design of chaos-based secure communication systems. Commun Nonlinear Syst Numer Simul 16(9):3721–3727

    Article  MathSciNet  MATH  Google Scholar 

  115. Zhang X, Zhao Z, Wang J (2014) Chaotic image encryption based on circular substitution box and key stream buffer. Signal Process: Image Commun 29(8):902–913

    Google Scholar 

  116. Zhou W, Xu Y, Lu H, Pan L (2008) On dynamics analysis of a new chaotic attractor. Phys Lett A 372(36):5773–5777

    Article  MathSciNet  MATH  Google Scholar 

  117. Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manag 2:104–109

    Google Scholar 

  118. Zhu Q, Azar AT (2015) Complex system modelling and control through intelligent soft computations, studies in fuzzines and soft computing, vol 319. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaidyanathan, S. (2016). Sliding Mode Controller Design for the Global Stabilization of Chaotic Systems and Its Application to Vaidyanathan Jerk System. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Chaotic Systems . Studies in Computational Intelligence, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-30279-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30279-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30278-2

  • Online ISBN: 978-3-319-30279-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics