Skip to main content

Dependence of Protein Membrane Mechanisms on Specific Physicochemical Lipid Properties

  • Chapter
  • First Online:
Membrane Protein – Lipid Interactions: Physics and Chemistry in the Bilayer

Abstract

In Chap. 3 we have shown some examples of how lipid-protein interactions lead to laterally segregated structures in membranes, and how the activity of proteins is related to physical properties of the phospholipids. In this chapter we will first discuss the relationship between membrane structure and bioenergetics, emphasizing that lipids may be part of the machinery involved in proton transport between protein components of the respiratory chain. Second we will present selected examples that relate membrane protein activity with specific phospholipids and we will discuss how this can be rationalized theoretically by introducing the concept of a lateral pressure profile of the membrane. Since the magnitude of lateral pressure within the membrane cannot be experimentally measured, we will show how using atomic force microscopy in force mode and single-molecule force spectroscopy, we can extract nanomechanical properties of the membranes related to protein packing. These properties, in particular the unfolding force or the force required to extract a membrane protein from a bilayer, are related to both the lateral pressure of pure lipid monolayers and the intrinsic surface curvature of monolayers. Finally, we will discuss the application of FRET to identify the phospholipid species present at the lipid-protein interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Faraday constant is equal to the product of the Avogadro constant and the proton charge: F = N A e = 96485.309 C mol−1.

  2. 2.

    Concentration, ideally in molal scale, will be used by assuming that the activity coefficients of H+ and ions in general are nearly the same at both sides of the membrane.

  3. 3.

    Δr G′ is the “transformed” Gibbs energy change, and it refers to the value of the magnitude at a given T, P, pH and ionic strength (I).

References

  • Attard GS, Templer RH, Smith WS, Hunt AN, Jackowski S. Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc Natl Acad Sci U. S. A. 2000;97(16):9032–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanov M, Heacock P, Guan Z, Dowhan W. Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli. Proc Natl Acad Sci U. S. A. 2010;107(34):15057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantor RS. Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem. 1997;101(96):1723–5.

    Article  CAS  Google Scholar 

  • Cantor RS. The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids. 1999;101(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  • Caplan SR, Essig A. Bioenergetics and linear nonequilibrium thermodynamics the steady state. 2nd ed. NY: Harvard University Press; 1983.

    Google Scholar 

  • Dowhan W, Mileykovskaya E, Bogdanov M. Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta. 2004;1666(1–2):19–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore DE, Dougherty DA. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J. 2003;85(3):1512–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goormaghtigh E, Raussens V, Ruysschaert J-M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta Rev Biomembr. 1999;1422:105–85.

    Article  CAS  Google Scholar 

  • Gullingsrud J, Schulten K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J. 2004;86(6):3496–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haines TH, Dencher NA. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 2002;528:35–9.

    Google Scholar 

  • Houslay MD, Stanley KK. Dynamics of biological membranes. Chischester: Wiley; 1982.

    Google Scholar 

  • Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, et al. X-ray structure of a voltage-dependent K+ channel. Nature. 2003;423(6935):33–41.

    Article  CAS  PubMed  Google Scholar 

  • le Coutre J, Narasimhan LR, Patel CK, Kaback HR. The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli. Proc Natl Acad Sci U. S. A. 1997;94(19):10167–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • le Coutre J, Kaback HR, Patel CK, Heginbotham L, Miller C. Fourier transform infrared spectroscopy reveals a rigid alpha-helical assembly for the tetrameric Streptomyces lividans K+ channel. Proc Natl Acad Sci U. S. A. 1998;95(11):6114–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Madden TD, Quinn PJ. Arrhenius discontinuities of Ca2+-ATPase activity are unrelated to changes in membrane lipid fluidity of sarcoplasmic reticulum. FEBS letters. 1979;197(1):110–2.

    Article  Google Scholar 

  • Marius P, Alvis SJ, East JM, Lee AG. The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids. Biophys J. 2005;89(6):4081–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merino-Montero S. Dissertation Thesis, University of Barcelona. 2005.

    Google Scholar 

  • Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961;191:144–8.

    Article  CAS  PubMed  Google Scholar 

  • Muller DJ. AFM: a nanotool in membrane biology. Biochemistry. 2008;47(31):7986–98.

    Article  CAS  PubMed  Google Scholar 

  • Ollila S. Lateral Pressure in Lipid Membranes and Its Role in Function of Membrane Proteins. Dissertation thesis. Tampere University of Technology. 2010.

    Google Scholar 

  • Perozo E, Rees DC. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opp. Struct. Biol. 2003;13:432–42.

    Article  CAS  Google Scholar 

  • Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature. 2009;459(7245):379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picas L, Montero MT, Morros A, Vázquez-Ibar JL, Hernández-Borrell J. Evidence of phosphatidylethanolamine and phosphatidylglycerol presence at the annular region of lactose permease of Escherichia coli. Biochim Biophys Acta Biomembr. 2010;1798(2):291–6.

    Article  CAS  Google Scholar 

  • Prats M, Tocanne JF, Teissié J. Lateral proton conduction along a lipid-water interface layer: a molecular mechanism for the role of hydration water molecules. Biochimie. 1989;71(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  • Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev. 2000;64(4):672–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuli Ollila OH, Róg T, Karttunen M, Vattulainen I. Role of sterol type on lateral pressure profiles of lipid membranes affecting membrane protein functionality: comparison between cholesterol, desmosterol, 7-dehydrocholesterol and ketosterol. J Struct Biol. 2007;159 2 SPEC. ISS. :311–23.

    Google Scholar 

  • Schmidt D, Jiang Q-X, MacKinnon R. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature. 2006;444(7120):775–9.

    Article  CAS  PubMed  Google Scholar 

  • Seeger HM, Bortolotti CA, Alessandrini A, Facci P. Phase-transition-induced protein redistribution in lipid bilayers. J Phys Chem B. 2009;113(52):16654–9.

    Article  CAS  PubMed  Google Scholar 

  • Serdiuk T, Madej MG, Sugihara J, Kawamura S, Mari SA, Kaback HR, et al. Substrate-induced changes in the structural properties of LacY. Proc Natl Acad Sci. 2014;111:E1571–80.

    Google Scholar 

  • Serdiuk T, Sugihara J, Mari SA, Kaback HR, Müller DJ. Observing a lipid-dependent alteration in single lactose permeases. Structure. 2015;23(4):754–61.

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Germà C, Domènech Ò, Montero MT, Hernández-Borrell J. Effect of lactose permease presence on the structure and nanomechanics of two-component supported lipid bilayers. Biochim Biophys Acta Biomembr. 2014;1838(3):842–52.

    Article  Google Scholar 

  • Templer RH, Castle SJ, Curran a R, Rumbles G, Klug DR. Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylcholine. Faraday Discuss. 1998;111:41–53; discussion 69–78.

    Google Scholar 

  • Valiyaveetil FI, Zhou Y, MacKinnon R. Lipids in the structure, folding, and function of the KcsA K+ channel. Biochemistry. 2002;41(35):10771–7.

    Article  CAS  PubMed  Google Scholar 

  • Vitrac H, Bogdanov M, Dowhan W. Proper fatty acid composition rather than an ionizable lipid amine is required for full transport function of lactose permease from Escherichia coli. J Biol Chem. 2013;288:5873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weingarth M, Prokofyev A, van der Cruijsen EAW, Nand D, Bonvin AMJJ, Pongs O, et al. Structural determinants aspects of specific lipid binding to potassium channels. J Am Chem Soc. 2013;135:3983–8.

    Google Scholar 

  • Zhang W, Kaback HR. Effect of the lipid phase transition on the lactose permease from Escherichia coli. Biochemistry. 2000;39(49):14538–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi H. Borrell .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Borrell, J.H., Domènech, Ò., Keough, K.M.W. (2016). Dependence of Protein Membrane Mechanisms on Specific Physicochemical Lipid Properties. In: Membrane Protein – Lipid Interactions: Physics and Chemistry in the Bilayer. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30277-5_4

Download citation

Publish with us

Policies and ethics