Skip to main content

Topology, Big Data and Optimization

  • Chapter
  • First Online:
Big Data Optimization: Recent Developments and Challenges

Part of the book series: Studies in Big Data ((SBD,volume 18))

Abstract

The idea of using geometry in learning and inference has a long history going back to canonical ideas such as Fisher information, Discriminant analysis, and Principal component analysis. The related area of Topological Data Analysis (TDA) has been developing in the last decade. The idea is to extract robust topological features from data and use these summaries for modeling the data. A topological summary generates a coordinate-free, deformation invariant and highly compressed description of the geometry of an arbitrary data set. Topological techniques are well-suited to extend our understanding of Big Data. These tools do not supplant existing techniques, but rather provide a complementary viewpoint to existing techniques. The qualitative nature of topological features do not give particular importance to individual samples, and the coordinate-free nature of topology generates algorithms and viewpoints well suited to highly complex datasets. With the introduction of persistence and other geometric-topological ideas we can find and quantify local-to-global properties as well as quantifying qualitative changes in data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically, these are path-connected components. However, this distinction is a mathematical formality, as the two are indistinguishable in any form of sampled data.

  2. 2.

    http://ctl.appliedtopology.org/.

References

  1. Aanjaneya, M., Chazal, F., Chen, D., Glisse, M., Guibas, L., Morozov, D.: Metric graph reconstruction from noisy data. Int. J. Comput. Geom. Appl. 22(04), 305–325 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, H., Carlsson, G.: Evasion paths in mobile sensor networks. Int. J. Robot. Res. 34(1), 90–104 (2015)

    Article  MathSciNet  Google Scholar 

  3. Adcock, A., Carlsson, E., Carlsson, G.: The ring of algebraic functions on persistence bar codes. http://comptop.stanford.edu/u/preprints/multitwo (2012)

  4. Adcock, A., Rubin, D., Carlsson, G.: Classification of hepatic lesions using the matching metric. Comput. Vis. Image Underst. 121, 36–42 (2014)

    Article  Google Scholar 

  5. Adler, R.J.: The Geometry of Random Fields, vol. 62. Siam (1981)

    Google Scholar 

  6. Adler, R.J.: Some new random field tools for spatial analysis. Stochast. Environ. Res. Risk Assess. 22(6), 809–822 (2008)

    Article  MathSciNet  Google Scholar 

  7. Amari, S.I., Nagaoka, H.: Methods of Information Geometry, vol. 191. American Mathematical Society (2007)

    Google Scholar 

  8. Arai, Z., Kalies, W., Kokubu, H., Mischaikow, K., Oka, H., Pilarczyk, P.: A database schema for the analysis of global dynamics of multiparameter systems. SIAM J. Appl. Dyn. Syst. 8(3), 757–789 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Babson, E., Benjamini, I.: Cut sets and normed cohomology with applications to percolation. Proc. Am. Math. Soc. 127(2), 589–597 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bajardi, P., Delfino, M., Panisson, A., Petri, G., Tizzoni, M.: Unveiling patterns of international communities in a global city using mobile phone data. EPJ Data Sci. 4(1), 1–17 (2015)

    Article  Google Scholar 

  11. Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: ALENEX, pp. 31–38. SIAM (2014)

    Google Scholar 

  12. Bauer, U., Kerber, M., Reininghaus, J., Wagner, H.: PHAT-persistent homology algorithms toolbox. In: Mathematical Software-ICMS 2014, pp. 137–143. Springer (2014)

    Google Scholar 

  13. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  14. Bendich, P., Wang, B., Mukherjee, S.: Local homology transfer and stratification learning. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1355–1370. SIAM (2012)

    Google Scholar 

  15. Berwald, J., Gidea, M., Vejdemo-Johansson, M.: Automatic recognition and tagging of topologically different regimes in dynamical systems. Discontinuity Non-linearity Complex. 3(4), 413–426 (2015)

    Article  MATH  Google Scholar 

  16. Blumberg, A.J., Gal, I., Mandell, M.A., Pancia, M.: Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces. Found. Comput. Math. 14(4), 745–789 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional morse-smale functions. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 19. IEEE Computer Society (2003)

    Google Scholar 

  18. Bubenik, P.: Statistical Topology Using Persistence Landscapes (2012)

    Google Scholar 

  19. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16, 77–102 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Bubenik, P., Scott, J.A.: Categorification of persistent homology. arXiv:1205.3669 (2012)

  21. Busaryev, O., Cabello, S., Chen, C., Dey, T.K., Wang, Y.: Annotating simplices with a homology basis and its applications. In: Algorithm Theory-SWAT 2012, pp. 189–200. Springer (2012)

    Google Scholar 

  22. Bush, J., Gameiro, M., Harker, S., Kokubu, H., Mischaikow, K., Obayashi, I., Pilarczyk, P.: Combinatorial-topological framework for the analysis of global dynamics. Chaos: Interdiscip. J. Nonlinear Sci. 22(4), 047,508 (2012)

    Google Scholar 

  23. Cabello, S., Giannopoulos, P.: The complexity of separating points in the plane. In: Proceedings of the Twenty-Ninth Annual Symposium on Computational Geometry, pp. 379–386. ACM (2013)

    Google Scholar 

  24. Carlsson, G.: Topology and data. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chambers, E.W., Erickson, J., Nayyeri, A.: Homology flows, cohomology cuts. SIAM J. Comput. 41(6), 1605–1634 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the 25th Annual Symposium on Computational Geometry, SCG’09, pp. 237–246. ACM, New York, NY, USA (2009). doi:10.1145/1542362.1542407

  28. Chazal, F., Cohen-Steiner, D., Guibas, L.J., Oudot, S.Y.: The Stability of Persistence Diagrams Revisited (2008)

    Google Scholar 

  29. Chazal, F., Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L.: Stochastic convergence of persistence landscapes and silhouettes. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 474. ACM (2014)

    Google Scholar 

  30. Chazal, F., Guibas, L.J., Oudot, S.Y., Skraba, P.: Persistence-based clustering in riemannian manifolds. J. ACM (JACM) 60(6), 41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The structure and stability of persistence modules. arXiv:1207.3674 (2012)

  32. Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes. arXiv:1207.3885 (2012)

  33. Chazal, F., Skraba, P., Patel, A.: Computing well diagrams for vector fields on \(\mathbb{R}^{n}\). Appl. Math. Lett. 25(11), 1725–1728 (2012)

    Google Scholar 

  34. Chen, C., Freedman, D.: Quantifying homology classes. arXiv:0802.2865 (2008)

  35. Chen, C., Freedman, D.: Hardness results for homology localization. Discrete Comput. Geom. 45(3), 425–448 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  37. Choudhury, A.I., Wang, B., Rosen, P., Pascucci, V.: Topological analysis and visualization of cyclical behavior in memory reference traces. In: Pacific Visualization Symposium (PacificVis), 2012 IEEE, pp. 9–16. IEEE (2012)

    Google Scholar 

  38. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poinca and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009). doi:10.1007/s10208-008-9027-z

    Google Scholar 

  40. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have \({\rm L}_{\rm p}\)-stable persistence. Found. Comput. Math. 10(2), 127–139 (2010)

    Google Scholar 

  41. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, SCG’06, pp. 119–126. ACM, New York, NY, USA (2006). doi:10.1145/1137856.1137877

  42. de Silva, V., Ghrist, R., Muhammad, A.: Blind swarms for coverage in 2-D. In: Robotics: Science and Systems, pp. 335–342 (2005)

    Google Scholar 

  43. Dey, T.K., Hirani, A.N., Krishnamoorthy, B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput. 40(4), 1026–1044 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dey, T.K., Wenger, R.: Stability of critical points with interval persistence. Discrete Comput. Geom. 38(3), 479–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. 100(10), 5591–5596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Dłotko, P., Ghrist, R., Juda, M., Mrozek, M.: Distributed computation of coverage in sensor networks by homological methods. Appl. Algebra Eng. Commun. Comput. 23(1), 29–58 (2012). doi:10.1007/s00200-012-0167-7

    Google Scholar 

  47. Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry: Twenty Years Later, Contemporary Mathematics, vol. 453, pp. 257–282. American Mathematical Society (2008)

    Google Scholar 

  48. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS Press (2009)

    Google Scholar 

  49. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-smale complexes for piecewise linear 3-manifolds. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 361–370. ACM (2003)

    Google Scholar 

  50. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical morse complexes for piecewise linear 2-manifolds. In: Proceedings of the Seventeenth Annual Symposium on Computational Geometry, pp. 70–79. ACM (2001)

    Google Scholar 

  51. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: 41st Annual Symposium on Foundations of Computer Science, 2000. Proceedings, pp. 454–463 (2000)

    Google Scholar 

  52. Edelsbrunner, H., Morozov, D., Patel, A.: Quantifying transversality by measuring the robustness of intersections. Found. Comput. Math. 11(3), 345–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  53. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry, vol. 150. Springer (1995)

    Google Scholar 

  54. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1038–1046. Society for Industrial and Applied Mathematics (2005)

    Google Scholar 

  55. Fasy, B.T., Kim, J., Lecci, F., Maria, C.: Introduction to the R package TDA. arXiv:1411.1830 (2014)

  56. Gabriel, P.: Unzerlegbare Darstellungen I. Manuscripta Mathematica 6(1), 71–103 (1972). doi:10.1007/BF01298413

    Google Scholar 

  57. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ghrist, R., Krishnan, S.: A topological max-flow-min-cut theorem. In: Proceedings of Global Signal Inference (2013)

    Google Scholar 

  59. Ghrist, R., Muhammad, A.: Coverage and hole-detection in sensor networks via homology. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, p. 34. IEEE Press (2005)

    Google Scholar 

  60. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of morse-smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007)

    Article  Google Scholar 

  61. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

    Google Scholar 

  62. Huang, K., Ni, C.C., Sarkar, R., Gao, J., Mitchell, J.S.: Bounded stretch geographic homotopic routing in sensor networks. In: INFOCOM, 2014 Proceedings IEEE, pp. 979–987. IEEE (2014)

    Google Scholar 

  63. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kruskal, J.B.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2), 115–129 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kruskal, J.B., Wish, M.: Multidimensional Scaling, vol. 11. Sage (1978)

    Google Scholar 

  66. Lamar-Leon, J., Baryolo, R.A., Garcia-Reyes, E., Gonzalez-Diaz, R.: Gait-based carried object detection using persistent homology. In: Bayro-Corrochano, E., Hancock, E. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, no. 8827 in Lecture Notes in Computer Science, pp. 836–843. Springer International Publishing (2014)

    Google Scholar 

  67. Le Roux, B., Rouanet, H.: Geometric Data Analysis. Springer, Netherlands, Dordrecht (2005)

    Book  MATH  Google Scholar 

  68. Lee, J.A., Verleysen, M.: Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing 67, 29–53 (2005). doi:10.1016/j.neucom.2004.11.042

    Google Scholar 

  69. Lesnick, M.: The Optimality of the Interleaving Distance on Multidimensional Persistence Modules. arXiv:1106.5305 (2011)

  70. Li, X., Lin, S., Yan, S., Xu, D.: Discriminant locally linear embedding with high-order tensor data. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(2), 342–352 (2008)

    Article  Google Scholar 

  71. Lum, P.Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., Carlsson, G.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3 (2013). doi:10.1038/srep01236

  72. van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. J. Mach. Learn. Res. 10(1–41), 66–71 (2009)

    Google Scholar 

  73. Maria, C., Boissonnat, J.D., Glisse, M., Yvinec, M.: The Gudhi library: simplicial complexes and persistent homology. In: Mathematical Software-ICMS 2014, pp. 167–174. Springer (2014)

    Google Scholar 

  74. Mather, J.: Notes on Topological Stability. Harvard University Cambridge (1970)

    Google Scholar 

  75. Mischaikow, K.: Databases for the global dynamics of multiparameter nonlinear systems. Technical report, DTIC Document (2014)

    Google Scholar 

  76. Mischaikow, K., Kokubu, H., Mrozek, M., Pilarczyk, P., Gedeon, T., Lessard, J.P., Gameiro, M.: Chomp: Computational homology project. http://chomp.rutgers.edu

  77. Morozov, D.: Dionysus. http://www.mrzv.org/software/dionysus/ (2011)

  78. Morozov, D., de Silva, V., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discrete Comput. Geom. 45(4), 737–759 (2011). doi:10.1007/s00454-011-9344-x

    Google Scholar 

  79. Mrozek, M.: Topological dynamics: rigorous numerics via cubical homology. In: Advances in Applied and Computational Topology: Proceedings Symposium, vol. 70, pp. 41–73. American Mathematical Society (2012)

    Google Scholar 

  80. Muhammad, A., Jadbabaie, A.: Decentralized computation of homology groups in networks by gossip. In: American Control Conference, ACC 2007, pp. 3438–3443. IEEE (2007)

    Google Scholar 

  81. Munch, E., Turner, K., Bendich, P., Mukherjee, S., Mattingly, J., Harer, J.: Probabilistic fréchet means for time varying persistence diagrams. Electron. J. Statist. 9(1), 1173–1204 (2015). doi:10.1214/15-EJS1030. http://dx.doi.org/10.1214/15-EJS1030

    Google Scholar 

  82. Nanda, V.: Perseus: The Persistent Homology Software (2012)

    Google Scholar 

  83. Otter, N., Porter, M.A., Tillmann, U., Grindrod, P., Harrington, H.A.: A roadmap for the computation of persistent homology. arXiv:1506.08903 [physics, q-bio] (2015)

  84. Perea, J.A., Deckard, A., Haase, S.B., Harer, J.: Sw1pers: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data. BMC Bioinf. (Accepted July 2015)

    Google Scholar 

  85. Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15(3), 799–838 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  86. Petri, G., Expert, P., Turkheimer, F., Carhart-Harris, R., Nutt, D., Hellyer, P.J., Vaccarino, F.: Homological scaffolds of brain functional networks. J. R. Soc. Interface 11(101) (2014). doi:10.1098/rsif.2014.0873

    Google Scholar 

  87. Pokorny, F.T., Bekiroglu, Y., Exner, J., Björkman, M.A., Kragic, D.: Grasp Moduli spaces, Gaussian processes, and multimodal sensor data. In: RSS 2014 Workshop: Information-based Grasp and Manipulation Planning (2014)

    Google Scholar 

  88. Pokorny, F.T., Bekiroglu, Y., Kragic, D.: Grasp moduli spaces and spherical harmonics. In: Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 389–396. IEEE (2014)

    Google Scholar 

  89. Pokorny, F.T., Ek, C.H., Kjellström, H., Kragic, D.: Topological constraints and kernel-based density estimation. In: Advances in Neural Information Processing Systems 25, Workshop on Algebraic Topology and Machine Learning, 8 Dec, Nevada, USA (2012)

    Google Scholar 

  90. Pokorny, F.T., Hang, K., Kragic, D.: Grasp moduli spaces. In: Robotics: Science and Systems (2013)

    Google Scholar 

  91. Pokorny, F.T., Kjellström, H., Kragic, D., Ek, C.: Persistent homology for learning densities with bounded support. In: Advances in Neural Information Processing Systems, pp. 1817–1825 (2012)

    Google Scholar 

  92. Pokorny, F.T., Stork, J., Kragic, D., others: Grasping objects with holes: A topological approach. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 1100–1107. IEEE (2013)

    Google Scholar 

  93. Richardson, E., Werman, M.: Efficient classification using the Euler characteristic. Pattern Recogn. Lett. 49, 99–106 (2014)

    Article  Google Scholar 

  94. Robinson, M.: Universal factorizations of quasiperiodic functions. arXiv:1501.06190 [math] (2015)

  95. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  96. Salamon, D.: Morse theory, the conley index and floer homology. Bull. London Math. Soc 22(2), 113–140 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  97. Sexton, H., Vejdemo-Johansson, M.: jPlex. https://github.com/appliedtopology/jplex/ (2008)

  98. Sheehy, D.R.: Linear-size approximations to the vietoris-rips filtration. Discrete Comput. Geom. 49(4), 778–796 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  99. de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006). doi:10.1177/0278364906072252

    Google Scholar 

  100. de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebraic Geom. Topol. 7, 339–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  101. de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Prob. 27(12), 124,003 (2011). doi:10.1088/0266-5611/27/12/124003

    Google Scholar 

  102. de Silva, V., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. In: Hershberger, J., Fogel, E. (eds.) Proceedings of the 25th Annual Symposium on Computational Geometry, pp. 227–236. Aarhus (2009)

    Google Scholar 

  103. de Silva, V., Škraba, P., Vejdemo-Johansson, M.: Topological analysis of recurrent systems. In: NIPS 2012 Workshop on Algebraic Topology and Machine Learning, 8 Dec, Lake Tahoe, Nevada, pp. 1–5 (2012)

    Google Scholar 

  104. Singh, G., Mémoli, F., Carlsson, G.E.: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In: SPBG, pp. 91–100 (2007)

    Google Scholar 

  105. Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 45–52. IEEE (2010)

    Google Scholar 

  106. Stork, J., Pokorny, F.T., Kragic, D., others: Integrated motion and clasp planning with virtual linking. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3007–3014. IEEE (2013)

    Google Scholar 

  107. Stork, J., Pokorny, F.T., Kragic, D., others: A topology-based object representation for clasping, latching and hooking. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 138–145. IEEE (2013)

    Google Scholar 

  108. Tahbaz-Salehi, A., Jadbabaie, A.: Distributed coverage verification in sensor networks without location information. IEEE Trans. Autom. Control 55(8), 1837–1849 (2010)

    Article  MathSciNet  Google Scholar 

  109. Takens, F.: Detecting strange attractors in turbulence. Dyn. Syst. Turbul. Warwick 1980, 366–381 (1981)

    MathSciNet  MATH  Google Scholar 

  110. Tausz, A., Vejdemo-Johansson, M., Adams, H.: javaPlex: a research platform for persistent homology. In: Book of Abstracts Minisymposium on Publicly Available Geometric/Topological Software, p. 7 (2012)

    Google Scholar 

  111. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  112. Turner, K., Mileyko, Y., Mukherjee, S., Harer, J.: Fréchet means for distributions of persistence diagrams. Discrete Comput. Geom. 52(1), 44–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  113. Vejdemo-Johansson, M.: Sketches of a platypus: persistent homology and its algebraic foundations. Algebraic Topol.: Appl. New Dir. 620, 295–320 (2014)

    MathSciNet  MATH  Google Scholar 

  114. Vejdemo-Johansson, M., Pokorny, F.T., Skraba, P., Kragic, D.: Cohomological learning of periodic motion. Appl. Algebra Eng. Commun. Comput. 26(1–2), 5–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  115. Vergne, A., Flint, I., Decreusefond, L., Martins, P.: Homology based algorithm for disaster recovery in wireless networks. In: 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 685–692. IEEE (2014)

    Google Scholar 

  116. Worsley, K.J.: Local maxima and the expected Euler characteristic of excursion sets of \(\chi ^{2}\), F and t fields. Adv. Appl. Probab. 13–42 (1994)

    Google Scholar 

  117. Worsley, K.J.: Boundary corrections for the expected Euler characteristic of excursion sets of random fields, with an application to astrophysics. Adv. Appl. Probab. 943–959 (1995)

    Google Scholar 

  118. Worsley, K.J.: Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images. Ann. Stat. 640–669 (1995)

    Google Scholar 

  119. Zarubin, D., Pokorny, F.T., Song, D., Toussaint, M., Kragic, D.: Topological synergies for grasp transfer. In: Hand Synergies—How to Tame the Complexity of Grapsing, Workshop, IEEE International Conference on Robotics and Automation (ICRA 2013), Karlsruhe, Germany. Citeseer (2013)

    Google Scholar 

  120. Zarubin, D., Pokorny, F.T., Toussaint, M., Kragic, D.: Caging complex objects with geodesic balls. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2999–3006. IEEE (2013)

    Google Scholar 

  121. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Vejdemo-Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vejdemo-Johansson, M., Skraba, P. (2016). Topology, Big Data and Optimization. In: Emrouznejad, A. (eds) Big Data Optimization: Recent Developments and Challenges. Studies in Big Data, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-30265-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30265-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30263-8

  • Online ISBN: 978-3-319-30265-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics