Skip to main content

Helly’s Theorem and Strongly Proximal Helly Theorem

  • Chapter
  • First Online:
Computational Proximity

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 102))

  • 686 Accesses

Abstract

This chapter introduces a strongly proximal version of Helly’s theorem for convex sets and convex bodies. The collection of labelled Voronoï regions in the mesh nerve on the apple surface in Fig. 11.1 is an example of a Helly family of convex bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    E.W. Weisstein, polyform, Mathworld–A Wolfram web resourcem, http://mathworld.wolfram.com/Polyform.html.

  2. 2.

    For much more about this, see http://mathworld.wolfram.com/Polyiamond.html.

References

  1. Gruber, P.: Convex and Discrete Geometry, Grundlehren der Mathematischen Wissenschaften, vol. 336, Xiv \(+\) 578 pp. Springer, Berlin (2007). MCS2000 52XX,11HXX, ISBN: 978-3-540-71132-2, MR2335496

    Google Scholar 

  2. Archimedes: Sphere and cylinder. On paraboloids, hyperboloids and ellipsoids, trans. and annot. by A. Czwalina-Allenstein. Cambridge University Press, UK (1897). Reprint of 1922, 1923, Geest & Portig, Leipzig 1987, The Works of Archimedes, Ed. by T.L. Heath, Cambridge University Press, Cambridge, 1897

    Google Scholar 

  3. Mani-Levitska, P.: Characterizations of convex sets. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, vol. A, B, pp. 19–41. North-Holland, Amsterdam (1993). MR1242975

    Chapter  Google Scholar 

  4. Gruber, P.M., J.M. Wills, E.: Handbook of Convex Geometry. North-Holland, Amsterdam (1993), vol. A: lxvi \(+\) 735 pp.; vol. B: ilxvi and 7371438 p. ISBN: 0-444-89598-1, MR1242973

    Google Scholar 

  5. Peters, J., Öztürk, M., Uçkun, M.: Klee-Phelps convex groupoids 0934, 1–5 (2014). arXiv:1411.0934, Mathematica Slovaca (2015, accepted)

  6. Firey, W.: Approximating convex bodies by algebraic ones. Archiv der Mathematik 25(1), 424–425 (1974). MR0353146

    Article  MathSciNet  MATH  Google Scholar 

  7. Hammer, P.: Approximation of convex surfaces by algebraic surfaces. Mathematika 10, 6471 (1963). MR0154184

    Article  MathSciNet  Google Scholar 

  8. Talata, I.: On extensive subsets of convex bodies. Periodica Mathematica Hungarica 38(3), 231–246 (1999). MR1756241

    Google Scholar 

  9. Guo, Q., Kaijser, S.: On asymmetry of some convex bodies. Discrete Comput. Geom. 27(2), 239–247 (2002). MR1880940

    Google Scholar 

  10. Edelsbrunner, H., Harer, J.: Computational Topology. An Introduction. American Mathematical Society, Providence (2010). Xii \(+\) 110 pp. MR2572029

    Google Scholar 

  11. Markovic, D.: Geometric Polyforms. 3M Makarije, Podgorica (2006)

    Google Scholar 

  12. Yang, W.: Adding layers to bumped-body polyforms with minimum perimeter preserves minimum perimeter. Electron. J. Comb. 13(r6), 1–11 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Rhodes, G.: Planar tilings by polyominoes, polyhexes, and polyiamonds. J. Comput. Appl. Math. 174(2), 329–353 (2005). MR 2005h:05042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Peters .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peters, J.F. (2016). Helly’s Theorem and Strongly Proximal Helly Theorem. In: Computational Proximity. Intelligent Systems Reference Library, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-30262-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30262-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30260-7

  • Online ISBN: 978-3-319-30262-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics