Skip to main content

Part of the book series: Texts in Computational Science and Engineering ((TCSE,volume 13))

  • 5271 Accesses

Abstract

The objective of this chapter is to derive and then test methods that can be used to evaluate the definite integral In most calculus textbooks the examples and problems dedicated to integration are not particularly complicated, although some require a clever combination of methods to carry out the integration. In the real world the situation is much worse. As an example, to find the deformation of an elastic body when compressed by a rigid punch it is necessary to evaluate (Gladwell [1980] Moreover, it is relatively easy to find integrals even worse than the one above. To illustrate, in the study of the emissions from a pulsar it is necessary to evaluate (Gwinn et al. [2012] where K 2 is the modified Bessel function. The point here is that effective numerical methods for evaluating integrals are needed, and our objective is to determine what they are.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogaert, I.: Iteration-free computation of Gauss–Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 36 (3), A1008–A1026 (2014). doi:10.1137/140954969. http://dx.doi.org/10.1137/140954969

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Dover, New York (2007). ISBN 9780486453392. https://books.google.com/books?id=gGCKdqka0HAC

  • Evans, G.A., Webster, J.R.: A comparison of some methods for the evaluation of highly oscillatory integrals. J. Comput. Appl. Math. 112, 55–69 (1999). ISSN 0377-0427. doi:http://dx.doi.org/10.1016/S0377-0427(99)00213-7

    Google Scholar 

  • Gander, W., Gautschi, W.: Adaptive quadrature—revisited. BIT 40 (1), 84–101 (2000). ISSN 0006-3835. doi:10.1023/A:1022318402393

    Google Scholar 

  • Gladwell, G.M.L.: Contact Problems in the Classical Theory of Elasticity. Sijthoff and Noordhoff, Germantown, MD (1980)

    Book  MATH  Google Scholar 

  • Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23 (106), 221–230 (1969). doi:10.3934/jcd.2014.1.391

    Article  MathSciNet  MATH  Google Scholar 

  • Gonnet, P.: A review of error estimation in adaptive quadrature. ACM Comput. Surv. 44 (4), 22:1–22:36 (2012). ISSN 0360-0300. doi:10.1145/ 2333112.2333117

    Google Scholar 

  • Gwinn, C.R., Johnson, M.D., Reynolds, J.E., Jauncey, D.L., Tzioumis, A.K., Dougherty, S., Carlson, B., Del Rizzo, D., Hirabayashi, H., Kobayashi, H., Murata, Y., Edwards, P.G., Quick, J.F.H., Flanagan, C.S., McCulloch, P.M.: Noise in the cross-power spectrum of the Vela pulsar. Astrophys. J. 758 (1), 6 (2012)

    Article  Google Scholar 

  • Holmes, M.H.: Connections between cubic splines and quadrature rules. Am. Math. Mon. 121 (7), 661–662 (2014)

    MathSciNet  MATH  Google Scholar 

  • Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Dover Publications, New York (1994). ISBN 9780486680293. https://books.google.com/books?id=y77n2ySMJHUC

    MATH  Google Scholar 

  • Iserles, A., Nørsett, S.P., Olver, S.: Highly oscillatory quadrature: the story so far. In: de Castro, A.B., Gomez, D., Quintela, P., Salgado, P. (eds.) Numerical Mathematics and Advanced Applications, pp. 97–118. Springer, Berlin (2006). ISBN 978-3-540-34287-8. doi:10.1007/978-3-540-34288-5_6

    Google Scholar 

  • Love, C.H.: Abscissas and Weights for Gaussian Quadrature for n=2 to 100, and n=125, 150, 175, and 200. National Bureau of Standards, U.S. Government Printing Office, Washington, DC (1966)

    MATH  Google Scholar 

  • Nenad, U., Roberts, A.J.: A corrected quadrature formula and applications. ANZIAM J. 45, E41–E56 (2008)

    MathSciNet  MATH  Google Scholar 

  • Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Trefethen, L.N.: Is gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50 (1), 67–87 (2008). doi:10.1137/060659831. http://dx.doi.org/10.1137/060659831

    Article  MathSciNet  MATH  Google Scholar 

  • Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56 (3), 385–458 (2014). doi:10.1137/130932132

    Article  MathSciNet  MATH  Google Scholar 

  • Waldvogel, J.: Towards a general error theory of the trapezoidal rule. In: Gautschi, W., Mastroianni, G., Rassias, T.M. (eds.) Approximation and Computation. Springer Optimization and Its Applications, vol. 42, pp. 267–282. Springer, New York (2011)

    Google Scholar 

  • Weideman, J.A.C.: Numerical integration of periodic functions: a few examples. Am. Math. Mon. 109 (1), 21–36 (2002). ISSN 00029890. http://www.jstor.org/stable/2695765

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Holmes, M.H. (2016). Numerical Integration. In: Introduction to Scientific Computing and Data Analysis. Texts in Computational Science and Engineering, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-30256-0_6

Download citation

Publish with us

Policies and ethics