Skip to main content

Metallic Minerals, Ores, and Metals

  • Chapter
  • First Online:
Techniques in Archaeological Geology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

  • 1229 Accesses

Abstract

This chapter may seem somewhat unusual to those readers more accustomed to other discussions of archaeometallurgy. Typical of those researches, one often finds the focus on the metal artifact foremost with ancillary areas such as manufacturing, utilization, and provenance archaeological/geochemical) examined at various levels of detail. These emphases are important and well placed particularly from the standpoint of the materials science, but it is the aim of this chapter to characterize archaeological metals, minerals, and ores from a geological perspective. By this, we mean to discuss the geology of ancient metallurgy without any special emphasis on the end product, e.g., the metal artifact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson TJ (2003) Des artisans à la campagne: carrière de meules, forge et voie gallo-romaines à Châbles (FR), vol 19. Saint-Paul

    Google Scholar 

  • Astrup EE, Martens I (2011) Studies of Viking age swords: metallography and archaeology. Gladius XXXI:203–206

    Article  Google Scholar 

  • Bateman AM (1950) Economic mineral deposits, 2nd edn. Wiley, New York

    Google Scholar 

  • Blyth PH (1977) The effectiveness of Greek armour against arrows in the Persian war (490–479 BC): an interdisciplinary enquiry. Doctoral dissertation. University of Reading

    Google Scholar 

  • Bourgarit D (2007) Chalcolithic copper smelting. In: La Niece S, Hook D, Craddock PT (eds) Metals and mines: studies in archaeometallurgy. Archetype Publications, London, pp 3–14

    Google Scholar 

  • Braidwood RJ, Çambel H, Schirmer W (1981) Beginnings of village-farming communities in Southeastern Turkey: Çayönü Tepesi, 1978 and 1979. J Field Archaeol 8(1):249–258

    Google Scholar 

  • Brongniart A (1813) Essai de classification minéralogique des roches mélangées. J Min XXXIV:190–199

    Google Scholar 

  • Bronson B (1986) The making and selling of wootz, a crucible steel of India. Archeomaterials 1(1):13–51

    Google Scholar 

  • Carlson RL, Miller DJA (2005) Unraveling the structure and composition of the oceanic crust. Sea Technol 46(10):10–13

    Google Scholar 

  • Childs ST (1991) Transformations: iron and copper production in Central Africa. In: Recent trends in archaeometallurgical research. Smithsonian, pp 33–46

    Google Scholar 

  • Craddock PT (2001) From hearth to furnace: evidences for the earliest smelting technologies in the eastern Mediterranean. Paléorient 26:151–165

    Article  Google Scholar 

  • Dibner B (1958) Agricola on metals. Burndy Library, Norwalk

    Google Scholar 

  • Durman A (1988) The vučedol culture. In: Durman A (ed) Vučedol -three thousand years B.C. Muzejski pros-tor, Zagreb, pp 45–48

    Google Scholar 

  • Durman A (1997) Tin in Southeastern Europe? Opuscula Archaeologica Radovi Arheološkog zavoda 21(1):7–14

    Google Scholar 

  • Durman A (2004) Vučedolski hromi bog: zašto svi metalurški bogovi šepaju? (The lame God of Vučedol: why do all gods of metallurgy limp?). Gradski muzej Vukovar

    Google Scholar 

  • Durman A (ed) (2007) One hundred Croatian archeological sites. (Zagreb: Leksikografski Zavod Miroslav Krleža, in collaboration with the Croatian Archaeological Society, 367 pp

    Google Scholar 

  • Ehrenreich RM (ed) (1991) Metals in society: theory beyond analysis. MASCA Research Papers in Science and Archaeology, 8(II). 92 pp

    Google Scholar 

  • Epstein SM (1993) Cultural choice and technological consequences: constraint of innovation in the late prehistoric copper smelting industry of Cerro Huaringa, Peru. Ph.D. Thesis. University of Pennsylvania

    Google Scholar 

  • Frame LD (2009) Technological change in southwestern Asia: metallurgical production styles and social values during the chalcolithic and early bronze age. Ph.D. dissertation, University of Arizona

    Google Scholar 

  • Frankel HR (2012) The continental drift controversy, vol I–IV. Cambridge University Press, Cambridge

    Google Scholar 

  • Garrison EG (1999) A history of engineering and technology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Gass IG (1968) Is the troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42

    Article  Google Scholar 

  • Glumac PD (1991) Recent trends in archaeometallurgical research. MASCA research papers in science and archaeology, 8(I). 92 pp

    Google Scholar 

  • Goldschmidt VM (1912) Die kontaktmetamorphose im Kristianiagebiet. Geologiska Föreningen i Stockholm Förhandlingar 34(7):812–819

    Article  Google Scholar 

  • González LR (2004) Bronces sin nombre: La metalurgia prehispánica en el Noroeste Argentino. TusQuets

    Google Scholar 

  • Hart CJR, Mair JL, Goldfarb RJ, Groves DI (2005) Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory. In: Ishihara S, Stephens WE, Harley SL, Arima M, Nakajima T (eds) Fifth Hutton symposium; the origin of granites and related rocks. Special Paper, 389. Geological Society of America, pp 339–356

    Google Scholar 

  • Hauptman A (1989) The earliest periods of copper metallurgy in Feinan, Jordan. In: Hauptmann A, Pernika E, Wagner GA (eds) Proccedings of the International Symposium, Old World Archaeometallurgy. Heidelberg, 1987, Der Anschnitt, Beihaft 7. Deutsches Bergbau-Museum, Bochum, pp 119–135

    Google Scholar 

  • Hauptmann A, Weisgeberand G, Knauf EA (1985) Archäolometallugische Untersuchungen zur Kupferverhüttung der frühen Bronzezeit in Feinan, Wadi Arabah, Jordanien. Jahrb Römisches-Germanisches Zentralmuseums 35:510–516

    Google Scholar 

  • Henderson J (2000) The science and archaeology of materials. Routledge, London

    Google Scholar 

  • Herz N, Garrison EG (1998) Geological methods for archaeology. Oxford University Press, New York

    Google Scholar 

  • Hoover H (1912) De re Metallica. The Mining Magazine, London

    Google Scholar 

  • Hošek J, Košta J, Bárta P (2012) The metallographic examination of sword no. 438 as part of a systematic survey of swords from the early medieval stronghold of Mikulčice, Czech Republic. Gladius XXXII:87–102

    Google Scholar 

  • Hosler D (2014) Mesoamerican metallurgy: the perspective from the west. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 329–360

    Chapter  Google Scholar 

  • Hutchinson RW (1965) Genesis of Canadian massive sulphides by comparison to Cyprus deposits. Transactions LXVIII:286–300, The Canadian Mining and Metallurgical Bulletin. Montreal

    Google Scholar 

  • Jones JE (1982) The Laurion silver mines: a review of recent researches and results. Greece and Rome (Second Series) 29(02):169–183

    Article  Google Scholar 

  • Jovanovic B (1988) Early metallurgy in Yugoslavia. In: The beginning of the use of metals and alloys. pp 69–79

    Google Scholar 

  • Kafafi ZA (2014) New insights on the copper mines of Wadi Faynan/Jordan. Palest Explor Q 146(4):263–280

    Article  Google Scholar 

  • Keith M, Haase KM, Schwarz-Schampera U, Klemd R (2014) Effects of temperature, sulfur and oxygen fugacity on the composition of spahlerite from submarine hydrothermal vents. Geology 42:699–702

    Article  Google Scholar 

  • Kesler SE (1973) Copper, molybdenum and gold abundances in porphyry copper deposits. Econ Geol 68:106–112

    Article  Google Scholar 

  • Killick D (1991) The relevance of recent African iron-smelting practice to reconstructions of prehistoric smelting technology. In: Recent trends in archaeometallurgical research. pp 47–54

    Google Scholar 

  • Killick D (2009) Cairo to Cape: the spread of metallurgy through eastern and southern Africa. J World Prehistory 22:399–414

    Article  Google Scholar 

  • Killick D (2014) From ores to metals. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 11–45

    Chapter  Google Scholar 

  • Lechtman H (2014) Andean metallurgy in prehistory. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 361–422

    Chapter  Google Scholar 

  • Lechtman H, Klein S (1999) The production of copper-arsenic alloys (arsenic bronze) by cosmelting: modern experiment and ancient practice. J Archaeol Sci 26(5):497–526

    Article  Google Scholar 

  • Lespez L, Papadopolous S (2008) Etude geoarchaeologique du site d’Aghios Ioannis a Thasos. BCH 132:667–692

    Google Scholar 

  • Levy TE, Najjar M, Ben-Josef E (2014) New insights into the iron age archaeology of Edom, Southern Jordan, vol 35, Monumenta Archaeologica. University of New Mexico Press, Albuequerque

    Google Scholar 

  • Lutz J, Pernicka E (2013) Prehistoric copper from the Eastern Alps. In: Tykot RH (ed) Proceedings of the 38th International Symposium on Archaeometry – May 10th–14th 2010, Tampa. Open J Archaeometry 1:e25

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, pp 299–336

    Google Scholar 

  • Meixnar H, Paar W (1982) New observations on ore formation and weathering of the Kamariza Deposit, Laurion, SE Attica (Greece). In: Ore genesis. special publication of the society for geology applied to mineral deposits, vol 2. pp 760–776

    Google Scholar 

  • Mellaart J (1966) Excavations at Catal Hüyük, 1965: fourth preliminary report. Anatol Stud 16:165–191

    Article  Google Scholar 

  • Muhly JD (1985) Sources of tin and the beginnings of bronze metallurgy. Am J Archaeol 89:275–291

    Article  Google Scholar 

  • Muhly JD (2006) Chrysokamino in the history of early metallurgy. Hesperia Suppl 155–177

    Google Scholar 

  • Nerantzis N, Papadopolous S (2013) Reassessment and new data on the diachronic relationship of Thasos Island with its indigenous metal resources; a review. Archaeol Anthropol Sci 5:183–196

    Article  Google Scholar 

  • Notis MR (2014) Metals. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 47–66

    Chapter  Google Scholar 

  • Oxburgh ER (1968) An outline of the geology of the central Eastern Alps. Proc Geol Assoc 79:1–4

    Article  Google Scholar 

  • Papadopolous S (2008) Silver and copper production practices in the prehistoric settlement of Limenaria, Thasos. In: Tzachilli I (ed) Aegean metallurgy in the bronze age, proceedings of an international symposium held at the University of Crete. Ta Pragmata, Rethymnon, pp 59–67

    Google Scholar 

  • Pernicka et al (1997)

    Google Scholar 

  • Perret S, Serneels V (2006) Technological characterisation and quantification of a large-scale iron smelting site in Fiko (Dogon plateau, Mali). Proceedings actes ISA, pp 453–463

    Google Scholar 

  • Preuschen E (1973) Estrazione rninerarie dell’eta dal Bronzo nel Trentino. Prehist Alpina 9:113–150

    Google Scholar 

  • Radivojevic M (2012) On the origins of metallurgy in Europe: metal production in the Vinca Culture. Doctoral thesis, UCL (University College London)

    Google Scholar 

  • Rono PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20:1–104

    Article  Google Scholar 

  • Rothenberg B, Merkel J (1995) Late Neolithic copper smelting in the Arabah. Inst Archaeo-Metall Stud Newsl 19:1–17

    Google Scholar 

  • Rychner V, Kläntschi N (1995) Arsenic, nickel et antimoine. Cahiers d’Archéologie. Romande No.63, Tome 1. Lausanne

    Google Scholar 

  • Schmidt PR (1981) The origins of iron smelting in Africa: a complex technology in Tanzania (No. 1). Department of Anthropology, Brown University

    Google Scholar 

  • Sherratt S (2000) Catalogue of Cycladic antiquities in the Ashmolean Museum: the captive spirit, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Shimada I (2000) The late Prehispanic coastal states. In: Minelli LL (ed) The Inca world. University of Oklahoma Press, Norman, pp 49–64, 97–110

    Google Scholar 

  • Shimada I, Merkel J (1991) Copper-alloy metallurgy in ancient Peru. Sci Am 265:80–86

    Article  Google Scholar 

  • Steinmann G (1927) Die ophiolitischen Zonen in den mediterranen Kettengebirgen, translated and reprinted by Bernoulli and Friedman. In: Dilek, Newcomb (eds) Ophiolite concept and the evolution of geologic thought. Geological Society of America Special Publication 373, 77–91

    Google Scholar 

  • Wenner D, van der Merwe N (1987) Mining for the lowest grade ore: traditional iron production in northern Malawi. Geoarchaeology 2(3):199–216

    Article  Google Scholar 

  • Williams A (2009) A metallurgical study of some Viking swords. Gladius XXIX:121–184

    Article  Google Scholar 

  • Zuffardi P (1977) Ore/mineral deposits related to the Mesozoic ophiolites in Italy. In: Ridge JD (ed) IAGOD 5th symposium, proc. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 314–323

    Google Scholar 

  • Roberts BW, Thornton CP (2014) Archaeometallurgy in global perspective. Springer Science+ Business Media, New York

    Book  Google Scholar 

  • Pernicka E, Begemann F, Schmitt-Strecker S, Wagner GA (1993) Eneolithic and Early Bronze Age copper artefacts from the Balkans and their relation to Serbian copper ores. Praehistorische Zeitschrift 68(1):1–54

    Article  Google Scholar 

  • Pigott VC (1999). The archaeometallurgy of the Asian old world, vol 16. U. Penn Museum of Archaeology

    Google Scholar 

  • van der Merwe NJ, Avery DH (1982) Pathways to steel. Am Sci 70:146–155

    Google Scholar 

  • Rostoker RW, Pigott VC, Dvorak J (1989) Direct reduction of copper metal by oxide-sulphide mineral interaction. Archeomaterials 3:69–87

    Google Scholar 

  • Budd P, Gale D, Pollard AM, Thomas RG, Williams PA (1993) Evaluating lead isotope data: further observations. Archaeometry 35:241–263

    Article  Google Scholar 

  • Wertime TA (1978) The search for ancient tin: the geographic and historic boundaries. In: Franklin A, Odin JS, Wertime TA (eds) The search for ancient tin. U.S. Government Printing Office, Washington, DC, pp 1–6

    Google Scholar 

  • Renfrew C, Gimbutas M, Elster ES (eds) (2003) Excavations at Sitagroi: a prehistoric village in Northeast Greece, vol 2. Cotsen Institute of Archaeology, Los Angeles

    Google Scholar 

  • Hedges REM, Housley RA, Bronk CR, Van Klinken GJ (1990) Radiocarbon dates from the Oxford AMS system: Archaeometry Dateiist 11. Archaeometry 32(2):211–237

    Article  Google Scholar 

  • Forbes RJ (1964) Metallurgy in antiquity: a notebook for archaeologists and technologists, vol 8. Brill Archive, Leiden

    Google Scholar 

  • Craddock PT (1980) The composition of copper produced at the ancient smelting camps in the Wadi Timna, Israel. In: Craddock PT (ed.) Scientific studies in early mining and extractive metallurgy. British Museum Research Laboratory, 165 ff

    Google Scholar 

  • Souckova-Sigelová J (2001) Treatment and usage of iron in the Hittite Empire in the 2nd millennium BC. Mediterranean Archaeol 1:189–193

    Google Scholar 

  • van der Merwe NJ, Avery DH (1987) Science and magic in African technology: traditional iron smelting in Malawi. Africa 57(2):143–172

    Article  Google Scholar 

  • Schmidt PD (1978) Historical archaeology: a structural approach in an African Culture. Greenwood Press, Westport

    Google Scholar 

  • Carr Donald D, Herz N (1989) Concise encyclopedia of mineral resources

    Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40(1):1–26

    Article  Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418. doi:10.1130/G25527A.1

    Article  Google Scholar 

  • Robertson AH (2006) Contrasting modes of ophiolite emplacement in the Eastern Mediterranean region. Geol Soc London Memoirs 32(1):235–261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Garrison, E. (2016). Metallic Minerals, Ores, and Metals. In: Techniques in Archaeological Geology. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-30232-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30232-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30230-0

  • Online ISBN: 978-3-319-30232-4

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics