Advertisement

“Baseline” and “Snapshot”: Philosophical Reflections on an Approach to Historical Case Studies

  • Giora HonEmail author
Chapter
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 319)

Abstract

Logically, generating knowledge requires a fixed set of presuppositions, anchored in a given conceptual framework. Scientists may or may not be aware of all the elements that are involved in the process of generating knowledge but, whether the elements are assumed explicitly or implicitly, they have to be fixed for the production of knowledge to be coherent. I distinguish between two sets of elements of knowledge, which I call a “baseline” and a “snapshot.” The baseline represents the sum of what is, in principle, available to the community of practitioners in the field. In contrast, a snapshot is personal, that is, it is the result of applying some rules of selection to the baseline. A snapshot includes, in addition to the selected elements, idiosyncratic assessments of the elements; such assessments may not be found in the standard literature. I analyze two case studies, theoretical and experimental, in which the practitioners themselves presupposed the distinction here proposed. I show that the distinction is an effective tool in the presentation of case studies with the goal of throwing light on how scientific knowledge is modified and changed. What is illuminating in the cases at hand is the fact that the scientists themselves exhibited in their works the dynamics of “baseline” and “snapshot,” in parallel to the practice of the historians and the philosophers of science.

Keywords

Transverse Mass Scientific Change Theoretical Virtue Historical Case Study Methodological Commitment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Diderot, D., et al., (eds.). 1751–1765. Encyclopédie ou dictionaire raisonné des sciences, des arts et des métiers. Paris: Briasson. 17 vols.Google Scholar
  2. Dirac, P.A.M. 1982. The early years of relativity. In Albert Einstein: Historical and cultural perspectives, ed. G. Holton, and Y. Elkana, 79–90. Princeton: Princeton University Press.Google Scholar
  3. Dyck, W.V. 1904. Einleitender Bericht über das Unternehmen der Herausgabe der Encyklopädie der mathematischen Wissenschaften. In Encyclopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, ed. W. Meyer, vol. 1, part. 1: Arithmetik und Algebra, v–xx. Leipzig: Teubner.Google Scholar
  4. Einstein, A. 1905. Zur Elektrodynamik bewegter Körper. Annalen der Physik 17: 891–921. Reprinted in (Stachel, 1989, Doc. 23).Google Scholar
  5. Einstein, A. 1907. Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik 4(4): 411–462. Reprinted in (Stachel, 1989, Doc. 47).Google Scholar
  6. Einstein, A. 1949. Autobiographisches. In Albert Einstein: Philosopher-Scientist, ed. P.A. Schilpp, 1–96. La Salle (Illinois): Open Court.Google Scholar
  7. Franklin, A. 1981. Millikan’s published and unpublished data on oil drops. Historical Studies in the Physical Sciences 11: 185–201.CrossRefGoogle Scholar
  8. Hirosige, T. 1976. The ether problem, the mechanistic world view, and the origins of the theory of relativity. Historical Studies in the Physical Sciences 7: 3–82.CrossRefGoogle Scholar
  9. Hon, G. 1995. Is the identification of experimental error contextually dependent? The case of Kaufmann’s experiment and Its varied reception. In Scientific Practice: Theories and Stories of Doing Physics, ed. J.Z. Buchwald, 170–223. Chicago: Chicago University Press.Google Scholar
  10. Hon, G., and B.R. Goldstein. 2005. How Einstein made asymmetry disappear: Symmetry and Relativity in 1905. Archive for History of Exact Sciences 59: 437–544.CrossRefGoogle Scholar
  11. Hon, G., and B.R. Goldstein. 2009. Spotlight on: The nature of scientific change; in pursuit of conceptual change: The case of legendre and symmetry. Centaurus 51: 288–293.CrossRefGoogle Scholar
  12. Kaufmann, W. 1906. Über die Konstitution des Elektrons. Annalen der Physik 19: 487–453.CrossRefGoogle Scholar
  13. Lorentz, H.A. 1904. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Koninklijke Akademie van Wetenschappen te Amsterdam. Section of Sciences. Proceedings 6: 809–831.Google Scholar
  14. Lorentz, H.A. 1916. Theory of electrons and its applications to the phenomena of light and radiant heat, 2nd ed. Leipzig: Teubner.Google Scholar
  15. Lorentz, H.A. 1924. The radiation of light. Nature 113: 608–611.CrossRefGoogle Scholar
  16. Lorentz, H. A. 1931. Lectures on theoretical physics. Lectures delivered at the University of Leiden in 1922, vol. 3. London: McMillan.Google Scholar
  17. Miller, A. I. 1981. Albert Einstein’s special theory of relativity: Emergence (1905) and early interpretation (1905–1911). Reading: Addison-Wesley.Google Scholar
  18. Poincaré, H. 1914. Science and method. Trans. F. Maitland. London: Nelson.Google Scholar
  19. Poincaré, H. 1946. The foundations of science. Trans. G.B. Halted, with an introduction by R.J. Royce (this is a collection of three works: Science and hypothesis, 9–197, The value of science, 201–355, Science and method, 359–546).Google Scholar
  20. Poincaré, H. 1952. Science and hypothesis. Trans. J. Larmor. New York: Dover. Dover Reprint.Google Scholar
  21. Stachel, J., ed. 1989. The collected papers of Albert Einstein. Vol. 2. The swiss years: Writings, 1900–1909. Princeton, N.J.: Princeton University Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of HaifaHaifaIsrael

Personalised recommendations