Structure, Composition, and Function of Biocrust Lichen Communities

  • Roger RosentreterEmail author
  • David J. Eldridge
  • Martin Westberg
  • Laura Williams
  • Martin Grube
Part of the Ecological Studies book series (ECOLSTUD, volume 226)


In this chapter we examine the structure, composition, and function of soil biocrust (i.e., biological soil crust) communities dominated by lichens. Lichens are composite organisms resulting from a symbiotic relationship between a fungus and an alga or cyanobacterium. Biocrust lichens can tolerate a wide range of abiotic stresses such as desiccation, extreme temperature, and high light intensity, making them well adapted to life in arid, semiarid, and polar deserts where resources are limited and competition from vascular plants is low. The ability of some lichens to fix atmospheric nitrogen also gives them a competitive advantage over other organisms in environments that are recovering from disturbance. Biocrust lichens perform many important ecological functions such as providing habitat for microfauna, stabilizing soils, fixing nitrogen and carbon, and enhancing water flow through the soil. However, as with other biocrust taxa, they are highly susceptible to physical disturbances such as trampling by livestock, disturbance by vehicular traffic, and fire. Biocrust lichen ecology is hampered by a lack of information on the distribution of many taxa, difficulties of identifying small organisms, and the high cost of sampling environments where biocrust lichens are likely to form a major component of the surface biota. The adoption of morphological groups for classifying biocrust lichens has helped to simplify the study of biocrust community ecology, but more sophisticated DNA sequencing techniques are needed in order to better understand their ecology, distribution, and how they interact with other soil crust organisms.


Soil Crust Lichen Species Biological Soil Crust Morphological Group Bromus Tectorum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the European Commission for funding the BioDiversa project SCIN as well as the local funding agencies for administration of the ERA network.


  1. Ahmadjian V, Jacobs JB (1981) Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169–172CrossRefGoogle Scholar
  2. Ahmadjian V, Russell LA, Hildreth KC (1980) Artificial reestablishment of lichens. I. Morphological interactions between the phycobionts of different lichens and the mycobionts of Cladonia cristatella and Lecanora chrysoleuca. Mycologia 72:73–89CrossRefGoogle Scholar
  3. Anderson DC, Harper KT, Rushforth SR (1982) Recovery of cryptogamic crusts from grazing on Utah winter ranges. J Range Manag 35:355–359CrossRefGoogle Scholar
  4. Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Process 2:16CrossRefGoogle Scholar
  5. Beck A, Kasalicky T, Rambold G (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol 153:317–326CrossRefGoogle Scholar
  6. Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management, Ecological studies. Springer, Berlin, pp 3–30CrossRefGoogle Scholar
  7. Bjelland T, Ekman S (2005) Fungal diversity in rock beneath a crustose lichen as revealed by molecular markers. Microb Ecol 49:598–603CrossRefPubMedGoogle Scholar
  8. Brotherson JD, Rushforth SR, Johansen JR (1983) Effects of long-term grazing on cryptogam crust cover in Navajo National Monument, Arizona. J Range Manag 36:579–581CrossRefGoogle Scholar
  9. Büdel B, Scheidegger C (2008) Thallus morphology and anatomy. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 40–68CrossRefGoogle Scholar
  10. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57(2):229–247CrossRefPubMedGoogle Scholar
  11. Büdel B, Colesie C, Green TGA et al (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23:1639–1658CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chamizo S, Cantón Y, Rodríguez-Caballero E, Domingo F, Escudero A (2012) Runoff at contrasting scales in a semiarid ecosystem: a complex balance between biological soil crust features and rainfall characteristics. J Hydrol 452–453:130–138CrossRefGoogle Scholar
  13. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146CrossRefGoogle Scholar
  14. Colesie C, Gommeaux M, Green TGA, Büdel B (2013) Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123CrossRefGoogle Scholar
  15. Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress indicates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8(10):2104–2115. doi: 10.1038/ismej.2014.47 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Deines L, Rosentreter R, Eldrigde DJ, Serpe MD (2007) Germination and seedling characteristics of two annual grasses on lichen-dominated biological soil-crusts. Plant Soil 295:23–35CrossRefGoogle Scholar
  17. Delgado-Baquerizo M, Maestre FT, Gallardo A (2013) Biological soil crusts increase the resistance of soil nitrogen dynamics to changes in temperatures in a semi-arid ecosystem. Plant Soil 366:35–47CrossRefGoogle Scholar
  18. Del-Prado R, Cubas P, Lumbsch HT, Divakar PK, Blanco O, de Paz GA, Molina MC, Crespo A (2010) Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Mol Phylogenet Evol 56:125–133CrossRefPubMedGoogle Scholar
  19. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462CrossRefGoogle Scholar
  20. Eldridge DJ (1998) Dynamics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia. Acta Oecol 20:159–170CrossRefGoogle Scholar
  21. Eldridge DJ, Greene RSB (1994) Microbiotic soil crusts: a review of their roles in soil and ecological processes in the rangelands of Australia. Aust J Soil Res 32:389–415CrossRefGoogle Scholar
  22. Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecol 137:101–114CrossRefGoogle Scholar
  23. Eldridge DJ, Rosentreter R (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25CrossRefGoogle Scholar
  24. Eldridge DJ, Bowker MA, Maestre FT, Alonso P, Mau RL, Papadopoulos J, Escudero A (2010) Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13:499–510CrossRefGoogle Scholar
  25. Eversman S (1995) Lichens of alpine meadows on the Beartooth Plateau, Montana and Wyoming, U.S.A. Arct Alp Res 27:400–406CrossRefGoogle Scholar
  26. Farkas EE, Lökös LS (1994) Distribution of the lichens Cladonia magyarica Vain., and Solorinella asteriscus Anzi in Europe. Acta Bot Fenn 150:21–30Google Scholar
  27. Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191CrossRefGoogle Scholar
  28. Honegger R (1991) Functional Aspects of the Lichen Symbiosis. Annu Rev Plant Physiol Plant Mol Biol 42:553–578CrossRefGoogle Scholar
  29. Hyvärinen M, Härdling R, Tuomi J (2002) Cyanobacterial lichen symbiosis: the fungal partner as an optimal harvester. Oikos 98:498–504CrossRefGoogle Scholar
  30. Jones TC, Hogg ID, Wilkins RJ, Green TGA (2013) Photobiont selectivity for lichens and evidence for a possible glacial refugium in the Ross Sea Region, Antarctica. Polar Biol 36:767–774CrossRefGoogle Scholar
  31. Jorgensen PM (2001) Studies in the family Pannariaceae X. The lichen genus Protopannaria in the subantarctic islands. Cryptogam Mycol 22:67–72CrossRefGoogle Scholar
  32. Kelly LJ, Hollingsworth PM, Coppins BJ, Ellis CJ, Harrold P, Tosh J, Yahr R (2011) DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytol 191:288–300CrossRefPubMedGoogle Scholar
  33. Klopatek JM (1993) Cryptogamic crusts as potential indicators of disturbance in semi-arid landscapes. In: McKenzie DH, Hyatt DE, McDonald VJ (eds) Ecological indicators. Elsevier, New York, pp 773–786Google Scholar
  34. Lalley JS, Viles HA, Henschel JR, Lalley V (2006) Lichen-dominated soil crusts as arthropod habitat in warm deserts. J Arid Environ 67:579–593CrossRefGoogle Scholar
  35. Lange OL (2003) Photosynthesis of soil crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts, vol 150, Ecological studies. Springer, Berlin, pp 217–240Google Scholar
  36. Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202CrossRefGoogle Scholar
  37. Lange OL, Green TGA, Heber U (2001) Hydration‐dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? J Exp Bot 52:2033–2042CrossRefPubMedGoogle Scholar
  38. Li XR, Chen YW, Su YG, Tan HJ (2006) Effects of biological soil crust on desert insect diversity: evidence from the Tengger Desert of northern China. Arid Land Res Manag 20:263–280CrossRefGoogle Scholar
  39. Maestre FT, Escolar C, Martínez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–266CrossRefGoogle Scholar
  40. Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S, Maltez-Mouro S, García-Palacios P, Castillo-Monroy AP, Martínez I, Escudero A (2010) Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos Trans R Soc B 365:2057–2070CrossRefGoogle Scholar
  41. Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012) Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 100:317–330CrossRefGoogle Scholar
  42. McCune B, Rosentreter R, Ponzett JM, Shaw DC (2000) Epiphyte habitats in an old conifer forest in western Washington, USA. Bryologist 103(3): 417–427Google Scholar
  43. McCormick PV, Cairns J (1997) Algal indicators of aquatic ecosystem condition and change. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. CRC Press, Boca Raton, pp 177–207CrossRefGoogle Scholar
  44. Nash III TH, Sigal L (1981) Ecological approaches to the use of lichenized fungi as indicators of air pollution. Mycology seriesGoogle Scholar
  45. Neitlich PN, McCune B (1997) Hotspots of epiphytic lichen diversity in two young managed forests. Conserv Biol 11(1):172–182CrossRefGoogle Scholar
  46. Nimis PL, Martellos S (2004) Keys to the lichens of Italy I. Terricolous species. Edizioni Goliardiche, UdineGoogle Scholar
  47. Ott S, Meier T, Jahns HM (1995) Development, regeneration and parasitic interactions between the lichens Fulgensia bracteata and Toninia caeruleonigricans. Can J Bot 73(Suppl 1):595–602CrossRefGoogle Scholar
  48. Pérez-Ortega S, Ortiz-Álvarez R, Green TGA, de los Rios A (2012) Lichen myco- and photobiont diversity and their relationships at the edge of life (McMurdo Dry Valleys, Antarctica). FEMS Microbiol Ecol 82:429–448CrossRefPubMedGoogle Scholar
  49. Pike LH (1978) The importance of epiphytic lichens in mineral cycling. Bryologist 81:247–257CrossRefGoogle Scholar
  50. Pinho P, Branquinho C, Máguas C (2010) Modeling ecology of lichen communities based on photobiont type in relation to potential solar radiation and neighborhood land-use. In: Nash TH III, Geiser L, McCune BD et al (eds) Biology of lichens—symbiosis, ecology, environmental monitoring. Systematics and cyber applications, vol 105, Bibliotheca lichenologica. Borntreager Science Publishers, Champaign, pp 149–160Google Scholar
  51. Pino-Bodas R, Martín MP, Burgaz AR, Lumbsch HT (2013) Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Mol Ecol Resour 13:1058–1068PubMedGoogle Scholar
  52. Poelt J, Baumgärtner H (1964) Uber Rhizinenstrange bei placodialen Flechten. Österreich Bot Zeitschr 111:1–18CrossRefGoogle Scholar
  53. Poelt J, Grube M (1993a) Beiträge zur Kenntnis der Flechtenflora des Himalaya VI—Die Gattung Tephromela (mit Bemerkungen zum Genus Heppsora). Nova Hedwigia 57:1–17Google Scholar
  54. Poelt J, Grube M (1993b) Beiträge zur Kenntnis der Flechtenflora des Himalaya VIII—Lecanora subgen. Placodium. Nova Hedwigia 57:305–352Google Scholar
  55. Poelt J, Mayrhofer H (1988) Uber Cyanotrophie bei Flechten. Plant Syst Evol 158:265–281CrossRefGoogle Scholar
  56. Ponzetti JM, McCune BP (2001) Biotic soil crusts of Oregon's shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104(2):212–225Google Scholar
  57. Ponzetti J et al. (1998) The effects of fire and herbicides on microbiotic crust dynamics in high desert ecosystems. Nature Conservancy of OregonGoogle Scholar
  58. Prasse R, Bornkamm R (2008) Vascular plant response to microbiotic surface crusts. In: Breckle SW, Yair A (eds) Arid dune ecosystems. The nizzana sands in the negev desert, vol 200, Ecological studies. Springer, Berlin, pp 337–349CrossRefGoogle Scholar
  59. Reisner MD, Grace JB, Pyke DA, Doescher PS (2013) Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems. J Appl Ecol 50:1039–1049CrossRefGoogle Scholar
  60. Rogers RW, Lange RT (1971) Lichen populations on arid soil crusts around sheep watering places in South Australia. Oikos 22:93–100CrossRefGoogle Scholar
  61. Romeike J, Friedl T, Helms G, Ott S (2002) Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic Peninsula. Mol Biol Evol 19:1209–1217CrossRefPubMedGoogle Scholar
  62. Rosentreter, R (1995) Lichen diversity in managed forests of the Pacific Northwest, USA. In: Scheidegger C, Wolseley PA, Thor G (eds) Conservation Biology of Lichenised Fungi. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, Birmensdorf, pp. 103–124Google Scholar
  63. Rosentreter R, Eldridge DJ (2002) Monitoring biodiversity and ecosystem function: grasslands, deserts and steppe. In: Nimis PL, Scheidegger C, Wolseley PA (eds) Monitoring with lichens; monitoring lichens. Kluwer, Dordrecht, pp 223–237CrossRefGoogle Scholar
  64. Rosentreter R, Eldridge DJ (2004) Monitoring rangeland health: using a biological soil crust index. In: Hild AL, Shaw NL, Meyer SE, Booth DT, McArthur DE (comps) Seed and soil dynamics in shrubland ecosystems. Proceedings RMRS-P-31. Rocky Mountains Research Station, Ogden, UT, pp 74–76Google Scholar
  65. Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands. U.S. Government Printing Office, Denver, 103 ppGoogle Scholar
  66. Root HT, McCune B (2012) Surveying for biotic soil crust lichens of shrub steppe habitats in the Columbia Basin. N Am Fungi 7:1–21Google Scholar
  67. Ruprecht U, Brunauer G, Türk R (2014) High photobiont diversity in the common European soil crust lichen Psora decipiens. Biodivers Conserv 23:1771–1785CrossRefPubMedPubMedCentralGoogle Scholar
  68. Schaper GM (2003) Komplexe Interaktionsmuster und die Dynamik von Entwicklungs-prozessen in Flechtenökosystemen. Unpublished DPhil thesis, Heinrich-Heine-Universität, DüsseldorfGoogle Scholar
  69. Schneider G (1979) Die Flechtengattung Psora sensu Zahlbruckner. Bibliotheca Lichenologica 13. J. Cramer, Vaduz, 291 ppGoogle Scholar
  70. Seaward MRD (1988) Contribution of lichens to ecosystems. In: Galun M (ed) Handbook of lichenology. CRC Press, Boca Raton, pp 107–129Google Scholar
  71. Serpe MD, Orm JM, Barkes TR, Rosentreter R (2006) Germination and seed water status of four grasses on moss dominated biological soil crusts from arid lands. Plant Ecol 185:163–178CrossRefGoogle Scholar
  72. Serpe MD, Zimmerman SJ, Deines L, Rosentreter R (2008) Seed water status and root tip characteristics of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 303:191–205CrossRefGoogle Scholar
  73. Skuterud L, Gaare E, Eikelmann IM, Hove K, Steinnes E (2005) Chernobyl radioactivity persists in reindeer. J Environ Radioact 83:231–252CrossRefPubMedGoogle Scholar
  74. Timdal E (1986) A revision of Psora (Lecideaceae) in North America. Bryologist 89:253–275CrossRefGoogle Scholar
  75. Timdal E (1987) Problems of generic delimitation among squamiform members of the Lecideaceae. In: Peveling E (ed) Progress and problems in lichenology in the eighties, vol 25, Bibliotheca lichenologica. J. Cramer, Berlin, pp 243–247Google Scholar
  76. Tongway DJ, Smith EL (1989) Soil surface features as indicators of rangeland site productivity. Aust Rangel J 11:15–20CrossRefGoogle Scholar
  77. Trinkaus U, Mayrhofer H, Elix JA (2001) Revision of the Buellia epigaea-group (lichenized ascomycetes, Physciaceae) 2. The species in Australia. Lichenologist 33(01):47–62CrossRefGoogle Scholar
  78. West NE (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid and semi-arid regions. Adv Ecol Res 20:179–223CrossRefGoogle Scholar
  79. Wetmore CM. (1985) Lichens and air quality in Isle Royale National Park. Final Report submitted to National Park Service, Denver, Colo. 41ppGoogle Scholar
  80. Wirtz N, Lumbsch HT, Green TGA, Türk R, Pintado A, Sancho L, Schroeter B (2003) Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol 160:177–183CrossRefGoogle Scholar
  81. Will-Wolf S (1998) Lichens of Badlands National Park, South Dakota, USA. Lichenographia Thomsoniana: North American Lichenology in Honor of John W. Thomson. Mycotaxon, Ithaca, NY, pp 323–336Google Scholar
  82. Wu L, Zhang G, Lan S, Zhang D, Hu C (2013) Microstructures and photosynthetic diurnal changes in the different types of lichen soil crusts. Eur J Soil Biol 59:48–53CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Roger Rosentreter
    • 1
    Email author
  • David J. Eldridge
    • 2
  • Martin Westberg
    • 3
  • Laura Williams
    • 4
  • Martin Grube
    • 5
  1. 1.Biology DepartmentBoise State UniversityBoiseUSA
  2. 2.Centre for Ecosystem ScienceUniversity of New South WalesSydneyAustralia
  3. 3.Department of BotanySwedish Museum of Natural HistoryStockholmSweden
  4. 4.Faculty of Biology, Plant Ecology and SystematicsUniversity of KaiserslauternKaiserslauternGermany
  5. 5.Institute of Plant SciencesUniversity of GrazGrazAustria

Personalised recommendations