Skip to main content

Synthesis on Biological Soil Crust Research

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

In this closing chapter, we summarize the advances in biological soil crust (biocrust) research made during the last 1.5 decades. In the first part of the chapter, we discuss how in some research fields, such as the microbial diversity of fungi, bacteria, and microfauna, the interaction between biocrusts and vascular plants, and in the rehabilitation of biocrusts, particularly large achievements have been made. We also review the corroboration and refinement of previously established knowledge in other research areas, e.g., in the fields of soil stabilization and disturbance effects.

In the second part of the chapter, we outline the research gaps and challenges foreseen by us. We identify multiple knowledge gaps, including many understudied geographic regions, the largely missing link between genetic and morphological species identification data, and the answers to some mechanistic questions, such as the overall role of biocrusts in hydrology and nutrient cycles. With some ideas on promising new research questions and approaches, we close this chapter and the overall book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Belnap J, Lange OL (2003) Biological soil crusts: structure, function, and management, vol 150. Springer, Heidelberg

    Book  Google Scholar 

  • Beraldi-Campesi H (2013) Early life and the first terrestrial ecosystems. Ecol Process 2:1

    Article  Google Scholar 

  • Booth WE (1941) Algae as pioneers in plant succession and their importance in erosion control. Ecology 22:38–46

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Eldridge DJ et al (2014) Biological soil crusts as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23:1619–1637

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Darby BJ, Neher DA, Belnap J (2010) Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant Soil 328:421–431

    Article  CAS  Google Scholar 

  • Daryanto S, Eldridge DJ, Wang L (2013) Ploughing and grazing alter the spatial patterning of surface soils in a shrub-encroached woodland. Geoderma 200:67–76

    Article  Google Scholar 

  • Delaux P-M, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, Sekimoto H, Nishiyama T, Melkonian M, Pokorny L, Rothfels CJ, Winter Sederoff H, Stevenson DW, Surek B, Zhang Y, Sussman MR, Dunand C, Morris RJ, Roux C, Wong GK-S, Oldoyd GED, Ané J-M (2015) Algal ancestor of land plants was preadapted for symbiosis. PNAS 112(48):13390–13395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty KD, Antoninka AJ, Bowker MA, Velasco Ayuso S, Johnson NC (2015) A novel approach to cultivate biocrusts for restoration and experimentation. Ecol Restor 33:13–16

    Article  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Field JP, Belnap J, Breshears DD, Neff JC, Okin GS, Whicker JJ, Paint-er TH, Ravi S, Reheis MC, Reynolds RL (2010) The ecology of dust. Front Ecol Environ 8:423–430

    Article  Google Scholar 

  • Fletcher JE, Martin WP (1948) Some effects of algae and molds in the rain-crust of desert soils. Ecology 29:95–100

    Article  Google Scholar 

  • Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Potrafka R (2013) Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Godinez-Alvarez H, Morin C, Rivera-Aguilar V (2012) Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert. Plant Biol 14:157–162. doi:10.1111/j.1438-8677.2011.00495.x

    CAS  PubMed  Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    Article  CAS  Google Scholar 

  • Green TGA, Sancho LG, Pintado A, Schroeter B (2011) Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol 34:1643–1656

    Article  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, de Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Linné C (1774) Systema vegetabilium - secundum - classes ordines - genera species - cum characteribus et differentiis. Adornata Murray JA. Io. Crist, Dieterich, Gottingae, Gothae

    Google Scholar 

  • Longton RE (1981) Inter-population variation in morphology and physiology in the cosmopolitan moss Bryum argenteum Hedw. J Bryol 11:501–520

    Article  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser formation, Pilbara, Western Australia. Astrobiology 13(12):1103–1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallas PS (1776) Reise durch verschiedene Provinzen des Russischen Reiches in einem ausführlichen Auszuge. Johann Georg Fleischer, Frankfurt

    Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Change 2(10):752–755. doi:10.1038/NCLIMATE1596

    Article  CAS  Google Scholar 

  • Root HT, McCune B (2012) Regional patterns of biological soil crust lichen species composition related to vegetation, soils, and climate in Oregon, USA. J Arid Environ 79:93–100

    Article  Google Scholar 

  • Smith JMB (2015) Savanna. Encyclopedia Britannica Online (http://wwwbritanica.com/science/savanna)

  • Strömberg CAE (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544

    Article  Google Scholar 

  • Weber B, Wu D, Tamm A, Ruckteschler N, Meusel H, Rodriguez-Caballero E, Steinkamp J, Sörgel M, Behrendt T, Cheng Y, Crutzen P, Su H, Pöschl U (2015) Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci USA 112(50):15384–15389. doi:10.1073/pnas.1515818112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YW, Rao BQ, Wu PP, Liu YD, Li GB, Li DH (2013) Development of artificially induced biological soil crusts in fields and their effects on top soil. Plant Soil 370:115–124

    Article  CAS  Google Scholar 

  • Zhang YM, Nie HL (2011) Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, western China. Chin J Plant Ecol 35:380–388. doi:10.3724/sp.j.1258.2011.00380

    Article  Google Scholar 

  • Zhuang WW, Downing A, Zhang YM (2014) The influence of biological soil crusts on 15N translocation in soil and vascular plant in a temperate desert of Northwestern China. J Plant Ecol 8:420–428

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Emilio Rodríguez-Caballero for preparing and providing Fig. 25.1. BW gratefully acknowledges support by the Max Planck Society (Nobel Laureate Fellowship) and the German Research Foundation (projects WE2393/2-1 and WE2393/2-2). JB thanks the US Geological Survey’s Ecosystems and Climate and Land Use programs for support. BB acknowledges grants (BU666/11 to 19) by the German Research foundation (DFG). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weber, B., Belnap, J., Büdel, B. (2016). Synthesis on Biological Soil Crust Research. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_25

Download citation

Publish with us

Policies and ethics