Biological Soil Crusts as a Model System in Ecology

  • Fernando T. MaestreEmail author
  • Matthew A. Bowker
  • David J. Eldridge
  • Jordi Cortina
  • Roberto Lázaro
  • Antonio Gallardo
  • Manuel Delgado-Baquerizo
  • Miguel Berdugo
  • Andrea P. Castillo-Monroy
  • Enrique Valencia
Part of the Ecological Studies book series (ECOLSTUD, volume 226)


We explore in this chapter how biological soil crusts (biocrusts) may serve as a useful model system for studying multiple questions of interest in ecology, including biodiversity–ecosystem function relationships, positive and negative species interactions along environmental gradients, the source–sink hydrological dynamics in drylands, and ecosystem resistance and resilience. To illustrate our views, we synthesize recent and ongoing studies that are employing biocrusts as model systems to tackle these and other related questions, emphasizing the main features of biocrusts that make them special and well suited to advance ecological theory and our understanding of many important topics in community and ecosystem ecology. We complete the synthesis of the studies conducted so far with recommendations aiming to promote the use of biocrusts by community and ecosystem ecologists.


Vascular Plant Biotic Interaction Biological Soil Crust Ecosystem Ecology Biodiversity Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



FTM and EV were supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 242658 (BIOCOM) during the writing of this chapter. The contribution of JC was funded by the Spanish Ministry of Economy and Competitiveness (project UNCROACH, CGL2011-30581-C02-01). MB was supported by a FPU fellowship from the Spanish Ministry of Education, Culture and Sports (Ref. AP2010-0759). RL was supported by the Spanish Ministry of Economy and Competitiveness (SCIN—Soil Crust InterNational-, PRI-PIMBDV-2011-0874, a BiodivERsA project).


  1. Aguiar MR, Sala OE (1999) Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol 14:273–277CrossRefPubMedGoogle Scholar
  2. Armstrong RA, Welch AR (2007) Competition in lichen communities. Symbiosis 43:1–12Google Scholar
  3. Baggs EM, Philippot L (2011) Nitrous oxide production in the terrestrial environment. In: Moir JWB (ed) Nitrogen cycling in bacteria – molecular analysis. Caister Academic Press, Norfolk, pp 211–232Google Scholar
  4. Barger NN, Belnap J, Ojima DS, Mosier A (2005) NO gas loss from biologically crusted soils in Canyonlands National Park, Utah. Biogeochemistry 75:373–391CrossRefGoogle Scholar
  5. Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fert Soils 35:128–135CrossRefGoogle Scholar
  6. Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178CrossRefGoogle Scholar
  7. Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:3–76CrossRefGoogle Scholar
  8. Berdugo M, Soliveres S, Maestre FT (2014) Vascular plants and biocrust modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17:1242–1256CrossRefGoogle Scholar
  9. Bhark EW, Small EE (2003) Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6:0185–0196CrossRefGoogle Scholar
  10. Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor Ecol 15:13–23CrossRefGoogle Scholar
  11. Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts. Microb Ecol 43:13–25CrossRefPubMedGoogle Scholar
  12. Bowker MA, Soliveres S, Maestre FT (2010a) Competition increases with abiotic stress and regulates the diversity of biological soil crusts. J Ecol 98:551–560CrossRefGoogle Scholar
  13. Bowker MA, Maestre FT, Escolar C (2010b) Biological crusts as a model system for examining the biodiversity-function relationship in soils. Soil Biol Biochem 42:405–417CrossRefGoogle Scholar
  14. Bowker MA, Mau RL, Maestre FT et al (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795CrossRefGoogle Scholar
  15. Bowker MA, Eldridge DJ, Val J, Soliveres S (2013a) Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts. Soil Biol Biochem 61:14–22CrossRefGoogle Scholar
  16. Bowker MA, Maestre FT, Mau RL (2013b) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems 16:923–933CrossRefGoogle Scholar
  17. Bowker MA, Maestre FT, Eldridge DJ et al (2014) Biological soil crusts as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23:1619–1637CrossRefGoogle Scholar
  18. Brooker RW, Maestre FT, Callaway MR et al (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34CrossRefGoogle Scholar
  19. Büdel B, Colesie C, Green TGA et al (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23:1639–1658CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cardinale BJ, Matulich KL, Hooper DU et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592CrossRefPubMedGoogle Scholar
  21. Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67CrossRefPubMedGoogle Scholar
  22. Castillo-Monroy AP, Bowker MA, Maestre FT et al (2011) Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–174CrossRefGoogle Scholar
  23. Castillo-Monroy AP, Bowker MA, García-Palacios P et al (2015) Aspects of soil lichen biodiversity and aggregation interact to influence subsurface microbial function. Plant Soil 386:303–316CrossRefGoogle Scholar
  24. Colesie C, Scheu S, Green TGA et al (2012) The advantage of growing on moss: facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens. Oecologia 169:599–607CrossRefPubMedGoogle Scholar
  25. Concostrina-Zubiri L, Pescador DS, Martínez I, Escudero A (2014) Climate and small scale factors determine functional diversity shifts of biological soil crusts in Iberian drylands. Biodivers Conserv 23:1757–1770CrossRefGoogle Scholar
  26. Contreras S, Cantón Y, Solé-Benet A (2008) Sieving crusts and macrofaunal activity control soil water repellency in semiarid environments: evidences from SE Spain. Geoderma 145:225–258CrossRefGoogle Scholar
  27. Cortina J, Maestre FT (2005) Plant effects on soils in drylands: implications on community dynamics and ecosystem restoration. In: Binkley D, Menyailo O (eds) Proceedings of the NATO on tree species effects on soils: implications for global change. Springer, Berlin, pp 85–118CrossRefGoogle Scholar
  28. Cortina J, Maestre FT, Vallejo R et al (2006) Ecosystem structure, function, and restoration success: are they related? J Nat Conserv 14:152–160CrossRefGoogle Scholar
  29. Delgado-Baquerizo M, Covelo F, Maestre FT, Gallardo A (2013a) Biological soil crusts affect small-scale spatial patterns of inorganic N in a semiarid Mediterranean steppe. J Arid Environ 91:147–150CrossRefGoogle Scholar
  30. Delgado-Baquerizo M, Gallardo A, Wallenstein MD, Maestre FT (2013b) Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol 85:273–282CrossRefPubMedGoogle Scholar
  31. Delgado-Baquerizo M, Maestre FT, Rodríguez JGP, Gallardo A (2013c) Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol Biochem 62:22–27CrossRefGoogle Scholar
  32. Delgado-Baquerizo M, Morillas M, Maestre FT, Gallardo A (2013d) Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions. Plant Soil 372:643–654CrossRefGoogle Scholar
  33. Delgado-Baquerizo M, Gallardo A, Covelo F et al (2015) Differences in the chemistry of thalli determine species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29:1087–1098CrossRefGoogle Scholar
  34. Delgado-Baquerizo M, Maestre FT, Eldridge DJ et al (2016) Biocrusts mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytol 209:1540–1552CrossRefPubMedGoogle Scholar
  35. Eldridge DJ (1999) Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia. Acta Oecol 20:159–170CrossRefGoogle Scholar
  36. Eldridge DJ, Rosentreter RR (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25CrossRefGoogle Scholar
  37. Eldridge DJ, Bowker MA, Maestre FT et al (2010) Interactive effects of three ecosystem engineers on infiltration in a semi–arid Mediterranean grassland. Ecosystems 13:499–510CrossRefGoogle Scholar
  38. Escolar C, Martínez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos Trans R Soc B 367:3087–3099CrossRefGoogle Scholar
  39. Fogg GE (1966) The extracellular products of algae. Oceanogr Mar Biol 4:195–212Google Scholar
  40. Fraser LH, Henry MA, Carlyle CN et al (2013) Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front Ecol Environ 11:147–155CrossRefGoogle Scholar
  41. García-Palacios P, Bowker MA, Maestre F et al (2011) Ecosystem development in roadside grasslands: biotic control, plant–soil interactions, and dispersal limitations. Ecol Appl 21:2806–2821CrossRefPubMedPubMedCentralGoogle Scholar
  42. Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin, pp 89–120CrossRefGoogle Scholar
  43. Hauck M (2008) Metal homeostasis in Hypogymnia physodes is controlled by lichen substances. Environ Pollut 153:304–308CrossRefPubMedGoogle Scholar
  44. Hauck M, Jürgens S-R, Willenbruch K et al (2009) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22CrossRefPubMedGoogle Scholar
  45. Hawksworth DL (1982) Secondary fungi in the lichen symbioses: parasites, saprophytes and parasymbionts. J Hattori Bot Lab 52:357–366Google Scholar
  46. Hector A, Philipson C, Saner P et al (2011) The Sabah biodiversity experiment: a long term test of the role of tree diversity in restoring tropical forest structure and functioning. Philos Trans R Soc B 366:3303–3315CrossRefGoogle Scholar
  47. Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605CrossRefPubMedGoogle Scholar
  48. Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292CrossRefGoogle Scholar
  49. Kowalski M, Hausner G, Piercey-Normore MD (2011) Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience 52:413–418CrossRefGoogle Scholar
  50. Kuske CR, Yeager CM, Johnson S et al (2012) Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J 6:886–897CrossRefPubMedGoogle Scholar
  51. Lange OL (1974) Chelating agents and blue-green algae. Can J Microbiol 20:1311–1321CrossRefGoogle Scholar
  52. Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122CrossRefGoogle Scholar
  53. Lázaro R, Cantón Y, Solé-Benet A et al (2008) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the badlands (SE Spain) and its landscape effects. Geomorphology 102:252–266CrossRefGoogle Scholar
  54. Li H, Colica G, Wu P-P et al (2013) Shifting species interaction in soil microbial community and its influence on ecosystem functions modulating. Microb Ecol 65:700–708CrossRefPubMedGoogle Scholar
  55. Maestre FT (2003a) Small-scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist 35:71–81CrossRefGoogle Scholar
  56. Maestre FT (2003b) Variaciones en el patrón espacial a pequeña escala de los componentes de la costra biológica en un ecosistema mediterráneo semiárido. Rev Chil Hist Nat 76:35–46CrossRefGoogle Scholar
  57. Maestre FT, Cortina J (2002) Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–291CrossRefGoogle Scholar
  58. Maestre FT, Huesca MT, Zaady E, Bautista S, Cortina J (2002) Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biol Biochem 34:895–898CrossRefGoogle Scholar
  59. Maestre FT, Escudero A, Martinez I et al (2005) Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct Ecol 19:566–573CrossRefGoogle Scholar
  60. Maestre FT, Escolar C, Martínez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–266CrossRefGoogle Scholar
  61. Maestre FT, Martínez I, Escolar C, Escudero A (2009) On the relationship between abiotic stress and co-occurrence patterns: an assessment at the community level using soil lichen communities and multiple stress gradients. Oikos 118:1015–1022CrossRefGoogle Scholar
  62. Maestre FT, Bowker MA, Cantón Y et al (2011) Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J Arid Environ 75:1282–1291CrossRefPubMedPubMedCentralGoogle Scholar
  63. Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012) Species richness effects on ecosystem multifunctionality depend on evenness, composition, and spatial pattern. J Ecol 100:317–330CrossRefGoogle Scholar
  64. Maestre FT, Escolar C, Ladrón de Guevara M et al (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol 19:3835–3847CrossRefGoogle Scholar
  65. Maestre FT, Escolar C, Bardgett R et al (2015) Warming reduces the cover and diversity of biocrust-forming mosses and lichens, and increases the physiological stress of soil microbial communities in a semi-arid Pinus halepensis plantation. Front Microbiol 6:865CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97CrossRefGoogle Scholar
  67. McKay JK, Christian CE, Harrison S et al (2005) How local is local? A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440CrossRefGoogle Scholar
  68. Miller ME, Belote RT, Bowker MA et al (2011) Alternative states of a semiarid grassland ecosystem: implications for ecosystem services. Ecosphere 2:art55CrossRefGoogle Scholar
  69. Miralles I, Domingo F, García-Campos E et al (2012a) Biological and microbial activity in biological soil crusts from the Tabernas Desert, a sub-arid zone in SE Spain. Soil Biol Biochem 55:113–121CrossRefGoogle Scholar
  70. Miralles I, van Wesemael B, Cantón Y et al (2012b) Surrogate descriptors of C-storage processes on crusted semiarid ecosystems. Geoderma 189–190:227–235CrossRefGoogle Scholar
  71. Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406CrossRefPubMedGoogle Scholar
  72. Orlando J, Alfaro M, Bravo L et al (2010) Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event. Soil Biol Biochem 42:1183–1188CrossRefGoogle Scholar
  73. Palmquist K, Dahlman L, Valladares F et al (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichens associations from different climate zones. Oecologia 13:295–306CrossRefGoogle Scholar
  74. Pasari JR, Levi T, Zavaleta ES et al (2013) Several scales of biodiversity affect ecosystem multifunctionality. Proc Natl Acad Sci USA 110:10219–10222CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562CrossRefPubMedGoogle Scholar
  76. Puigdefábregas J, Solé A, Gutierrez L et al (1999) Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth Sci Rev 48:39–70CrossRefGoogle Scholar
  77. Rajeev L, Nunes da Rocha U, Klitgord N et al (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191CrossRefPubMedPubMedCentralGoogle Scholar
  78. Reed SC, Coe KK, Sparks JP et al (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Change 2:752–755CrossRefGoogle Scholar
  79. Rodríguez-Caballero E, Cantón Y, Chamizo S et al (2013) Soil loss and runoff in semiarid ecosystems: a complex interaction between biological soil crusts, micro-topography and hydrological drivers. Ecosystems 16:529–546CrossRefGoogle Scholar
  80. Rodríguez-Caballero E, Cantón Y, Lázaro R, Solé-Benet A (2014) Cross-scale interactions and nonlinearities in the hydrological and erosive behavior of semiarid catchments: the role of biological soil crusts. J Hydrol 517:815–825CrossRefGoogle Scholar
  81. Roscher C, Schumacher J, Baade J et al (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121CrossRefGoogle Scholar
  82. Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 164:224–234CrossRefGoogle Scholar
  83. Soliveres S, Eldridge DJ, Maestre FT, Bowker MA, Tighe M, Escudero A (2011) Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework. Perspect Plant Ecol Evol Syst 13:247–258CrossRefPubMedPubMedCentralGoogle Scholar
  84. Soliveres S, Smit C, Maestre FT (2015) Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biol Rev 90:297–313CrossRefPubMedGoogle Scholar
  85. Spitale D (2009) Switch between competition and facilitation within a seasonal scale at colony level in bryophytes. Oecologia 160:471–482CrossRefPubMedGoogle Scholar
  86. Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493CrossRefGoogle Scholar
  87. Turnbull L, Wilcox BP, Belnap J et al (2012) Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology 5:174–183CrossRefGoogle Scholar
  88. Ulrich W, Soliveres S, Kryszewski W, Maestre FT, Gotelli NJ (2014) Matrix models for quantifying competitive intransitivity from species abundance data. Oikos 123:1057–1070PubMedPubMedCentralGoogle Scholar
  89. Vitousek P (2002) Oceanic islands as model systems for ecological studies. J Biogeogr 29:573–582CrossRefGoogle Scholar
  90. Wang WB, Liu YD, Li DH, Hu CX, Rao BQ (2008) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41:926–929CrossRefGoogle Scholar
  91. Wedin M, Maier S, Fernandez-Brime S, Cronholm B et al (2015) Microbiome change by symbiotic invasion in lichens. Environ Microbiol. doi: 10.1111/1462-2920.13032 PubMedGoogle Scholar
  92. Whitford WG (2002) Ecology of desert systems. Academic Press, London, 343 pp.Google Scholar
  93. Whitton BA, Al-Shehri AM, Ellwood NTW et al (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 205–241CrossRefGoogle Scholar
  94. Xu S, Yin C, He M et al (2008) A technology for rapid reconstruction of moss-dominated soil crusts. Environ Eng Sci 25:1129–1138CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernando T. Maestre
    • 1
    Email author
  • Matthew A. Bowker
    • 2
  • David J. Eldridge
    • 3
  • Jordi Cortina
    • 4
  • Roberto Lázaro
    • 5
  • Antonio Gallardo
    • 6
  • Manuel Delgado-Baquerizo
    • 7
  • Miguel Berdugo
    • 1
  • Andrea P. Castillo-Monroy
    • 8
  • Enrique Valencia
    • 1
  1. 1.Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  3. 3.Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
  4. 4.Departamento de EcologíaUniversidad de AlicanteAlicanteSpain
  5. 5.Departamento de Desertificación y Geoecología, Estación Experimental de Zonas ÁridasCSICAlmeríaSpain
  6. 6.Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de OlavideSevillaSpain
  7. 7.Hawkesbury Institute for the EnvironmentUniversity of Western SydneyPenrithAustralia
  8. 8.Departamento de Ciencias NaturalesUniversidad Técnica Particular de LojaLojaEcuador

Personalised recommendations