Skip to main content

Biological Soil Crusts as a Model System in Ecology

  • Chapter
  • First Online:
Biological Soil Crusts: An Organizing Principle in Drylands

Abstract

We explore in this chapter how biological soil crusts (biocrusts) may serve as a useful model system for studying multiple questions of interest in ecology, including biodiversity–ecosystem function relationships, positive and negative species interactions along environmental gradients, the source–sink hydrological dynamics in drylands, and ecosystem resistance and resilience. To illustrate our views, we synthesize recent and ongoing studies that are employing biocrusts as model systems to tackle these and other related questions, emphasizing the main features of biocrusts that make them special and well suited to advance ecological theory and our understanding of many important topics in community and ecosystem ecology. We complete the synthesis of the studies conducted so far with recommendations aiming to promote the use of biocrusts by community and ecosystem ecologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar MR, Sala OE (1999) Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol 14:273–277

    Article  PubMed  Google Scholar 

  • Armstrong RA, Welch AR (2007) Competition in lichen communities. Symbiosis 43:1–12

    Google Scholar 

  • Baggs EM, Philippot L (2011) Nitrous oxide production in the terrestrial environment. In: Moir JWB (ed) Nitrogen cycling in bacteria – molecular analysis. Caister Academic Press, Norfolk, pp 211–232

    Google Scholar 

  • Barger NN, Belnap J, Ojima DS, Mosier A (2005) NO gas loss from biologically crusted soils in Canyonlands National Park, Utah. Biogeochemistry 75:373–391

    Article  CAS  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fert Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:3–76

    Article  Google Scholar 

  • Berdugo M, Soliveres S, Maestre FT (2014) Vascular plants and biocrust modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17:1242–1256

    Article  CAS  Google Scholar 

  • Bhark EW, Small EE (2003) Association between plant canopies and the spatial patterns of infiltration in shrubland and grassland of the Chihuahuan Desert, New Mexico. Ecosystems 6:0185–0196

    Article  Google Scholar 

  • Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor Ecol 15:13–23

    Article  Google Scholar 

  • Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts. Microb Ecol 43:13–25

    Article  CAS  PubMed  Google Scholar 

  • Bowker MA, Soliveres S, Maestre FT (2010a) Competition increases with abiotic stress and regulates the diversity of biological soil crusts. J Ecol 98:551–560

    Article  Google Scholar 

  • Bowker MA, Maestre FT, Escolar C (2010b) Biological crusts as a model system for examining the biodiversity-function relationship in soils. Soil Biol Biochem 42:405–417

    Article  CAS  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT et al (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–795

    Article  Google Scholar 

  • Bowker MA, Eldridge DJ, Val J, Soliveres S (2013a) Hydrology in a patterned landscape is co-engineered by soil-disturbing animals and biological crusts. Soil Biol Biochem 61:14–22

    Article  CAS  Google Scholar 

  • Bowker MA, Maestre FT, Mau RL (2013b) Diversity and patch-size distributions of biological soil crusts regulate dryland ecosystem multifunctionality. Ecosystems 16:923–933

    Article  CAS  Google Scholar 

  • Bowker MA, Maestre FT, Eldridge DJ et al (2014) Biological soil crusts as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23:1619–1637

    Article  Google Scholar 

  • Brooker RW, Maestre FT, Callaway MR et al (2008) Facilitation in plant communities: the past, the present and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Büdel B, Colesie C, Green TGA et al (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23:1639–1658

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592

    Article  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Monroy AP, Bowker MA, Maestre FT et al (2011) Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–174

    Article  Google Scholar 

  • Castillo-Monroy AP, Bowker MA, García-Palacios P et al (2015) Aspects of soil lichen biodiversity and aggregation interact to influence subsurface microbial function. Plant Soil 386:303–316

    Article  CAS  Google Scholar 

  • Colesie C, Scheu S, Green TGA et al (2012) The advantage of growing on moss: facilitative effects on photosynthetic performance and growth in the cyanobacterial lichen Peltigera rufescens. Oecologia 169:599–607

    Article  PubMed  Google Scholar 

  • Concostrina-Zubiri L, Pescador DS, Martínez I, Escudero A (2014) Climate and small scale factors determine functional diversity shifts of biological soil crusts in Iberian drylands. Biodivers Conserv 23:1757–1770

    Article  Google Scholar 

  • Contreras S, Cantón Y, Solé-Benet A (2008) Sieving crusts and macrofaunal activity control soil water repellency in semiarid environments: evidences from SE Spain. Geoderma 145:225–258

    Article  Google Scholar 

  • Cortina J, Maestre FT (2005) Plant effects on soils in drylands: implications on community dynamics and ecosystem restoration. In: Binkley D, Menyailo O (eds) Proceedings of the NATO on tree species effects on soils: implications for global change. Springer, Berlin, pp 85–118

    Chapter  Google Scholar 

  • Cortina J, Maestre FT, Vallejo R et al (2006) Ecosystem structure, function, and restoration success: are they related? J Nat Conserv 14:152–160

    Article  Google Scholar 

  • Delgado-Baquerizo M, Covelo F, Maestre FT, Gallardo A (2013a) Biological soil crusts affect small-scale spatial patterns of inorganic N in a semiarid Mediterranean steppe. J Arid Environ 91:147–150

    Article  Google Scholar 

  • Delgado-Baquerizo M, Gallardo A, Wallenstein MD, Maestre FT (2013b) Vascular plants mediate the effects of aridity and soil properties on ammonia-oxidizing bacteria and archaea. FEMS Microbiol Ecol 85:273–282

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Rodríguez JGP, Gallardo A (2013c) Biological soil crusts promote N accumulation in response to dew events in dryland soils. Soil Biol Biochem 62:22–27

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Morillas M, Maestre FT, Gallardo A (2013d) Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions. Plant Soil 372:643–654

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Gallardo A, Covelo F et al (2015) Differences in the chemistry of thalli determine species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29:1087–1098

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Eldridge DJ et al (2016) Biocrusts mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands. New Phytol 209:1540–1552

    Article  CAS  PubMed  Google Scholar 

  • Eldridge DJ (1999) Distribution and floristics of moss- and lichen-dominated soil crusts in a patterned Callitris glaucophylla woodland in eastern Australia. Acta Oecol 20:159–170

    Article  Google Scholar 

  • Eldridge DJ, Rosentreter RR (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT et al (2010) Interactive effects of three ecosystem engineers on infiltration in a semi–arid Mediterranean grassland. Ecosystems 13:499–510

    Article  Google Scholar 

  • Escolar C, Martínez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Philos Trans R Soc B 367:3087–3099

    Article  Google Scholar 

  • Fogg GE (1966) The extracellular products of algae. Oceanogr Mar Biol 4:195–212

    CAS  Google Scholar 

  • Fraser LH, Henry MA, Carlyle CN et al (2013) Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front Ecol Environ 11:147–155

    Article  Google Scholar 

  • García-Palacios P, Bowker MA, Maestre F et al (2011) Ecosystem development in roadside grasslands: biotic control, plant–soil interactions, and dispersal limitations. Ecol Appl 21:2806–2821

    Article  PubMed  PubMed Central  Google Scholar 

  • Green TGA, Sancho LG, Pintado A (2011) Ecophysiology of desiccation/rehydration cycles in mosses and lichens. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin, pp 89–120

    Chapter  Google Scholar 

  • Hauck M (2008) Metal homeostasis in Hypogymnia physodes is controlled by lichen substances. Environ Pollut 153:304–308

    Article  CAS  PubMed  Google Scholar 

  • Hauck M, Jürgens S-R, Willenbruch K et al (2009) Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens. Ann Bot 103:13–22

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL (1982) Secondary fungi in the lichen symbioses: parasites, saprophytes and parasymbionts. J Hattori Bot Lab 52:357–366

    Google Scholar 

  • Hector A, Philipson C, Saner P et al (2011) The Sabah biodiversity experiment: a long term test of the role of tree diversity in restoring tropical forest structure and functioning. Philos Trans R Soc B 366:3303–3315

    Article  Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: implications for conservation and restoration. Trends Ecol Evol 24:599–605

    Article  PubMed  Google Scholar 

  • Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292

    Article  CAS  Google Scholar 

  • Kowalski M, Hausner G, Piercey-Normore MD (2011) Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience 52:413–418

    Article  CAS  Google Scholar 

  • Kuske CR, Yeager CM, Johnson S et al (2012) Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J 6:886–897

    Article  CAS  PubMed  Google Scholar 

  • Lange OL (1974) Chelating agents and blue-green algae. Can J Microbiol 20:1311–1321

    Article  CAS  Google Scholar 

  • Lawrey JD (1986) Biological role of lichen substances. Bryologist 89:111–122

    Article  CAS  Google Scholar 

  • Lázaro R, Cantón Y, Solé-Benet A et al (2008) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the badlands (SE Spain) and its landscape effects. Geomorphology 102:252–266

    Article  Google Scholar 

  • Li H, Colica G, Wu P-P et al (2013) Shifting species interaction in soil microbial community and its influence on ecosystem functions modulating. Microb Ecol 65:700–708

    Article  CAS  PubMed  Google Scholar 

  • Maestre FT (2003a) Small-scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist 35:71–81

    Article  Google Scholar 

  • Maestre FT (2003b) Variaciones en el patrón espacial a pequeña escala de los componentes de la costra biológica en un ecosistema mediterráneo semiárido. Rev Chil Hist Nat 76:35–46

    Article  Google Scholar 

  • Maestre FT, Cortina J (2002) Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–291

    Article  CAS  Google Scholar 

  • Maestre FT, Huesca MT, Zaady E, Bautista S, Cortina J (2002) Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biol Biochem 34:895–898

    Article  CAS  Google Scholar 

  • Maestre FT, Escudero A, Martinez I et al (2005) Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct Ecol 19:566–573

    Article  Google Scholar 

  • Maestre FT, Escolar C, Martínez I, Escudero A (2008) Are soil lichen communities structured by biotic interactions? A null model analysis. J Veg Sci 19:261–266

    Article  Google Scholar 

  • Maestre FT, Martínez I, Escolar C, Escudero A (2009) On the relationship between abiotic stress and co-occurrence patterns: an assessment at the community level using soil lichen communities and multiple stress gradients. Oikos 118:1015–1022

    Article  Google Scholar 

  • Maestre FT, Bowker MA, Cantón Y et al (2011) Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. J Arid Environ 75:1282–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012) Species richness effects on ecosystem multifunctionality depend on evenness, composition, and spatial pattern. J Ecol 100:317–330

    Article  CAS  Google Scholar 

  • Maestre FT, Escolar C, Ladrón de Guevara M et al (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol 19:3835–3847

    Article  Google Scholar 

  • Maestre FT, Escolar C, Bardgett R et al (2015) Warming reduces the cover and diversity of biocrust-forming mosses and lichens, and increases the physiological stress of soil microbial communities in a semi-arid Pinus halepensis plantation. Front Microbiol 6:865

    Article  PubMed  PubMed Central  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S et al (2005) How local is local? A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Miller ME, Belote RT, Bowker MA et al (2011) Alternative states of a semiarid grassland ecosystem: implications for ecosystem services. Ecosphere 2:art55

    Article  Google Scholar 

  • Miralles I, Domingo F, García-Campos E et al (2012a) Biological and microbial activity in biological soil crusts from the Tabernas Desert, a sub-arid zone in SE Spain. Soil Biol Biochem 55:113–121

    Article  CAS  Google Scholar 

  • Miralles I, van Wesemael B, Cantón Y et al (2012b) Surrogate descriptors of C-storage processes on crusted semiarid ecosystems. Geoderma 189–190:227–235

    Article  Google Scholar 

  • Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science 336:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Orlando J, Alfaro M, Bravo L et al (2010) Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event. Soil Biol Biochem 42:1183–1188

    Article  CAS  Google Scholar 

  • Palmquist K, Dahlman L, Valladares F et al (2002) CO2 exchange and thallus nitrogen across 75 contrasting lichens associations from different climate zones. Oecologia 13:295–306

    Article  Google Scholar 

  • Pasari JR, Levi T, Zavaleta ES et al (2013) Several scales of biodiversity affect ecosystem multifunctionality. Proc Natl Acad Sci USA 110:10219–10222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    Article  CAS  PubMed  Google Scholar 

  • Puigdefábregas J, Solé A, Gutierrez L et al (1999) Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth Sci Rev 48:39–70

    Article  Google Scholar 

  • Rajeev L, Nunes da Rocha U, Klitgord N et al (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed SC, Coe KK, Sparks JP et al (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Change 2:752–755

    Article  CAS  Google Scholar 

  • Rodríguez-Caballero E, Cantón Y, Chamizo S et al (2013) Soil loss and runoff in semiarid ecosystems: a complex interaction between biological soil crusts, micro-topography and hydrological drivers. Ecosystems 16:529–546

    Article  Google Scholar 

  • Rodríguez-Caballero E, Cantón Y, Lázaro R, Solé-Benet A (2014) Cross-scale interactions and nonlinearities in the hydrological and erosive behavior of semiarid catchments: the role of biological soil crusts. J Hydrol 517:815–825

    Article  Google Scholar 

  • Roscher C, Schumacher J, Baade J et al (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl Ecol 5:107–121

    Article  Google Scholar 

  • Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 164:224–234

    Article  CAS  Google Scholar 

  • Soliveres S, Eldridge DJ, Maestre FT, Bowker MA, Tighe M, Escudero A (2011) Microhabitat amelioration and reduced competition among understorey plants as drivers of facilitation across environmental gradients: towards a unifying framework. Perspect Plant Ecol Evol Syst 13:247–258

    Article  PubMed  PubMed Central  Google Scholar 

  • Soliveres S, Smit C, Maestre FT (2015) Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biol Rev 90:297–313

    Article  PubMed  Google Scholar 

  • Spitale D (2009) Switch between competition and facilitation within a seasonal scale at colony level in bryophytes. Oecologia 160:471–482

    Article  PubMed  Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493

    Article  Google Scholar 

  • Turnbull L, Wilcox BP, Belnap J et al (2012) Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology 5:174–183

    Article  Google Scholar 

  • Ulrich W, Soliveres S, Kryszewski W, Maestre FT, Gotelli NJ (2014) Matrix models for quantifying competitive intransitivity from species abundance data. Oikos 123:1057–1070

    PubMed  PubMed Central  Google Scholar 

  • Vitousek P (2002) Oceanic islands as model systems for ecological studies. J Biogeogr 29:573–582

    Article  Google Scholar 

  • Wang WB, Liu YD, Li DH, Hu CX, Rao BQ (2008) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41:926–929

    Article  Google Scholar 

  • Wedin M, Maier S, Fernandez-Brime S, Cronholm B et al (2015) Microbiome change by symbiotic invasion in lichens. Environ Microbiol. doi:10.1111/1462-2920.13032

    PubMed  Google Scholar 

  • Whitford WG (2002) Ecology of desert systems. Academic Press, London, 343 pp.

    Google Scholar 

  • Whitton BA, Al-Shehri AM, Ellwood NTW et al (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 205–241

    Chapter  Google Scholar 

  • Xu S, Yin C, He M et al (2008) A technology for rapid reconstruction of moss-dominated soil crusts. Environ Eng Sci 25:1129–1138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FTM and EV were supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement 242658 (BIOCOM) during the writing of this chapter. The contribution of JC was funded by the Spanish Ministry of Economy and Competitiveness (project UNCROACH, CGL2011-30581-C02-01). MB was supported by a FPU fellowship from the Spanish Ministry of Education, Culture and Sports (Ref. AP2010-0759). RL was supported by the Spanish Ministry of Economy and Competitiveness (SCIN—Soil Crust InterNational-, PRI-PIMBDV-2011-0874, a BiodivERsA project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando T. Maestre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maestre, F.T. et al. (2016). Biological Soil Crusts as a Model System in Ecology. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_20

Download citation

Publish with us

Policies and ethics