How Biological Soil Crusts Became Recognized as a Functional Unit: A Selective History

  • Otto L. LangeEmail author
  • Jayne Belnap
Part of the Ecological Studies book series (ECOLSTUD, volume 226)


It is surprising that despite the worldwide distribution and general importance of biological soil crusts (hereafter referred to as biocrusts), scientific recognition and functional analysis of these communities are a relatively young field of science. In this chapter, we sketch the historical lines that led to the recognition of biocrusts as a community with important ecosystem functions. The idea of biocrusts as a functional ecological community has come from two main scientific branches: botany and soil science. For centuries, botanists have long recognized that multiple organisms colonize the soil surface in the open and often dry areas occurring between vascular plants. Much later, after the initial taxonomic and phytosociological descriptions were made, soil scientists and agronomists observed that these surface organisms interacted with soils in ways that changed the soil structure. In the 1970s, research on these communities as ecological units that played an important functional role in drylands began in earnest, and these studies have continued to this day. Here, we trace the history of these studies from the distant past until 1990, when biocrusts became well-known to scientists and the public.


Soil Crust Biological Soil Crust Soil Alga Lichen Community Gypsum Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are very grateful to the following colleagues for their valuable information and for help with historical hints: Burkhard Büdel (Kaiserslautern), Allan Green (Hamilton/Madrid), Thorsten Lumbsch (Chicago), Rolf Marstaller (Jena), Thomas Peer (Salzburg), Regine Stordeur (Halle), Stefan Vogel (Wien), and Gerhard Wagenitz (Göttingen). Special thanks are to Wilma Kreßmann (Würzburg): our work would not have been possible without her adept and resourceful literature search. Ulrike Lange is thanked for her help with Russian translations. JB was supported by the US Geological Survey Ecosystems and Climate and Land Use programs. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US Government.


  1. Arnold F (1868–1897) Lichenologische Ausflüge in Tirol. Part I–XXX. Verh Zool Bot Ges Wien 18–48Google Scholar
  2. Avnimelech Y, Nevo Z (1964) Biological clogging of sands. Soil Sci 98:222–226CrossRefGoogle Scholar
  3. Bailey D, Mazurak AP, Rosowski JR (1973) Aggregation of soil particles by algae. J Phycol 9:99–101CrossRefGoogle Scholar
  4. Belnap J (1993) Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Nat 53:89–95Google Scholar
  5. Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management, vol 150, 1st edn, Ecological studies. Springer, Heidelberg, 503 pGoogle Scholar
  6. Belnap J, Lange OL (2003) Biological soil crusts: structure, function, and management, vol 150, 2nd edn, Ecological studies. Springer, Heidelberg, 503 pCrossRefGoogle Scholar
  7. Blanck E, Passarge S, Rieser A (1926) Über Krustenböden und Krustenbildung wie auch Roterden, insbesondere ein Beitrag zur Kenntnis der Bodenbildung Palästinas. Chem Erde 2:348–395Google Scholar
  8. Bolyshev NN (1952) The origin and evolution of takyr soils (in Russian). Pochvovedeniye 5:403–417Google Scholar
  9. Bolyshev NN, Yevdokimova TH (1944) On the nature of the crust of takyrs (in Russian). Pochvovedeniye 7–8Google Scholar
  10. Bond RD, Harris JR (1964) The influence of the microflora on physical properties of soils. I. Effects associated with filamentous algae and fungi. Aust J Soil Res 2:111–122CrossRefGoogle Scholar
  11. Booth WE (1941) Algae as pioneers in plant succession and their importance in erosion control. Ecology 22:38–46CrossRefGoogle Scholar
  12. Bornkamm R (1958) Die Bunte-Erdflechten-Gesellschaft im südwestlichen Harzvorlande. Ber Deut Bot Ges 71:253–270Google Scholar
  13. Braun-Blanquet J (1928) Pflanzensoziologie. Springer, BerlinCrossRefGoogle Scholar
  14. Breazeale JM (1929) Algae and their effect upon the growth of citrus seedlings. Master thesis, University of Arizona, pp 41Google Scholar
  15. Bristol Roach BM (1927) On the algae of some normal English soils. J Agric Sci 17:563–588CrossRefGoogle Scholar
  16. Cameron RE (1958) Fixation of nitrogen by algae and associated organisms in semi-arid soils: identification and characterization of soil organisms. M.S. thesis, University of Arizon, TucsonGoogle Scholar
  17. Cameron RE (1969) Abundance of microflora in soils of desert regions. Calif. Institute of Technology, National Aeronautics and Space Administration, Jet Propulsion Laboratory. Pasadena Technical Report 32-7378, pp 1–16Google Scholar
  18. Cameron RE (1974) A review of the Russian book ‘Soil Algae’ by M. M. Gollerbakh and E. A. Shtina, including a translation of the bibliography. Phycologia 13:109–120CrossRefGoogle Scholar
  19. Cameron RE, Blank GB (1966) Desert algae: soil crusts and diaphanous substrata as algal habitats. Pasadena, California, Jet Propulsion Laboratory, California Institute of Technology, Technical report no. 32–971Google Scholar
  20. Cameron RE, Devaney JR (1970) Antarctic soil algal crusts: scanning electron and optical microscope study. Trans Am Microsc Soc 89:264–273CrossRefGoogle Scholar
  21. Chartres CJ (1992) Soil crusting in Australia. In: Summer ME, Stewart BA (eds) Soil crusting: chemical and physical processes. Lewis Publishers, Boca Raton, pp 339–365Google Scholar
  22. Collins FS (1909) The green algae of North America. Tufts college studies, vol II. Tufts College Press, MassCrossRefGoogle Scholar
  23. De PK (1939) The role of blue-green algae in nitrogen-fixing in rice fields. Proc R Soc London Ser B 127:121–139CrossRefGoogle Scholar
  24. Doidge EM (1950) The South African fungi and lichens to the end of 1945. Bothalia 5:1–1094Google Scholar
  25. Du Rietz GE (1925) Zur Kenntnis der flechtenreichen Zwergstrauchheiden im kontinentalen Südnorwegen. In: Svenska Växtsociologiska Sällskapets Handlingar IV. Lundequist, Uppsala, pp 1–80Google Scholar
  26. Dudley FL, Kelly LL (1939) Effect of soil type, slope, and surface conditions on intake of water. Nebr Agric Exp Stn Res Bull 112:1–15Google Scholar
  27. Dunne J (1989) Cryptogamic soil crusts in arid ecosystems. Rangelands 11:180–182Google Scholar
  28. Ehrenberg CG (1854) Zur Mikrogeologie. Leopold Voss, LeipzigGoogle Scholar
  29. Faust WF (1971) Blue-green algal effects on some hydrologic processes at the soil surface. Hydrology and water resources in Arizona and the Southwest. Proceedings of the 1971 meetings, Arizona Section. American Water Resources Association, and the Hydrology Section, Tempe, Arizona Academy Science, pp 99–105Google Scholar
  30. Fink B (1909) The composition of a desert lichen flora. Mycologia 1:87–103CrossRefGoogle Scholar
  31. Fletcher JE, Martin WP (1948) Some effects of algae and molds in the rain-crust of desert soils. Ecology 29:95–100CrossRefGoogle Scholar
  32. Frey W, Kürschner H (1987) A desert bryophyte synusia from the Jabal Tuwayq mountain systems (Central Saudi Arabia) with the description of two new Crossidium species (Pottiaceae). Nova Hedwigia 45:119–136Google Scholar
  33. Frey W, Kürschner H (1990) Das Fossobronio-Gigaspermetum mouretii ass. nov. in der Judäischen Wüste. 1. Verbreitung und Soziologie. Cryptogamic Bot 2:56–63Google Scholar
  34. Frey W, Kürschner H (1991) Conspectus bryophytorum orientalum et arabicorum. An annotated catalogue of the bryophyes of southwest Asia, vol 39, Bryophytorum bibliotheca. Cramer, Berlin, pp 1–181Google Scholar
  35. Frey W, Kürschner H (1995) Bryosoziologische Untersuchungen in Jordanien. 3. Lebensstrategieanalyse der terrestrischen und epilithischen Mossgesellschften. Fragm Flor Geobot 40:491–511Google Scholar
  36. Frey W, Kürschner H (2009) New records of brophytes from Afghanistan—with a note on the bryological exploration of the country. Nova Hedwigia 88:503–511CrossRefGoogle Scholar
  37. Frey W, Herrnstadt I, Kürschner H (1990) Verberitung und Soziologie terrestrischer Bryophytengesellschaften in der Judäischen Wüste. Phytocoenologia 19:233–256CrossRefGoogle Scholar
  38. Friedman EI, Galun M (1974) Desert algae, lichens, and fungi. In: Brown GW Jr (ed) Desert biology, vol 2. Academic Press, New York, pp 165–212CrossRefGoogle Scholar
  39. Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6:185–195CrossRefGoogle Scholar
  40. Fritsch FE (1907) The rôle of algae growth in the colonization of new ground and in the determination of scenery. Geogr J 30:531–548CrossRefGoogle Scholar
  41. Fritsch FE (1922) The terrestrial algae. J Ecol 10:220–237CrossRefGoogle Scholar
  42. Fritsch FE, Haines FM (1923) The moisture-relations of terrestrial algae II. Ann Bot 37:684–728Google Scholar
  43. Galun M (1963) Autecological and synecological observations on lichens of the Negev, Israel. Isr J Bot 12:179–187Google Scholar
  44. Gams H (1938) Über einige flechtenreiche Trockenrasen Mitteldeutschlands. Hercynia 1 Heft 2:277–284Google Scholar
  45. Geheeb A (1902) Beitrag zur Moosflora von Syrien. Allg Bot Zeitschr 8:42–44Google Scholar
  46. Goethe JW (1892) Einige Bemerkungen über sogenannte Tremella (“Some remarks about so-called Tremella”). In: Großherzogin Sophie von Sachsen (ed) Goethes Werke. II. Abt., 7. Band, Hermann Bölau, Weimar, pp 355–356Google Scholar
  47. Gollerbakh MM, Shtina EA (1969) Soil algae (Russian). Nauka Publishing House, Leningrad, 228 ppGoogle Scholar
  48. Graetz RD, Tongway DJ (1986) Influence of grazing management on vegetation, soil structure and nutrient distribution and the infiltration of applied rainfall in a semi-arid chenopod shrubland. Aust J Ecol 11:347–360CrossRefGoogle Scholar
  49. Granhall U, Henriksson E (1969) Nitrogen-fixing blue-green algae in Swedish soils. Oikos 20:175–178CrossRefGoogle Scholar
  50. Griffith W (1849) Notulae ad planta asiaticas, part II. In: On the higher cryptogamous plants. C. A. Serrao, CalcuttaGoogle Scholar
  51. Harper KT, Marble JR (1988) A role for nonvascular plants in management of arid and semiarid rangelands. In: Tueller PT (ed) Vegetation science applications for rangeland analysis and management. Kluwer Academic Publishers, Dordrecht, pp 135–169CrossRefGoogle Scholar
  52. Isichei AO (1990) The role of algae and cyanobacteria in arid lands. A review. Arid Soil Res Rehabil 4:1–17CrossRefGoogle Scholar
  53. Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147CrossRefGoogle Scholar
  54. Kaiser E (1926) Die Pflanzenwelt des Hennebergisch-Fränkischen Muschelkalkgebietes. Fedde Rep Spec Nov Regni Veg Beih 44:1–280Google Scholar
  55. Kaiser E (1930) Die Steppenheiden in Thüringen und Franken zwishen Saale und Main. Sonderschriften der Akademie gemeinnütziger Wiss. zu Erfurt. Carl Villaret, ErfurtGoogle Scholar
  56. Keller B (1930) Die Erdflechten und Cyanophyceen am unteren Lauf der Wolga und des Ural. In: Karsten G (ed) Vegetationsbilder, Reihe 20, Heft 8. Fischer, JenaGoogle Scholar
  57. Killian C, Fehér D (1939) Recherches sur la microbiologie des sols désertiques. Paul Lechevallier, ParisGoogle Scholar
  58. Kleiner EF, Harper KT (1972) Environment and community organization in grasslands of Canyonlands National Park. Ecology 53:299–309CrossRefGoogle Scholar
  59. Kleiner EF, Harper KT (1977) Soil properties in relation to cryptogamic groundcover in Canyonlands National Park. J Range Manag 30:202–205CrossRefGoogle Scholar
  60. Klement O (1955) Prodromus der mitteleuropäischen Flechtengesellschaften. Fedde Rep Spec Nov Regni Veg Beih 135:5–194Google Scholar
  61. Klinsmann EF (1861) Ueber Bildung und Entstehung von Humus and Festlegung des fliegenden Dünensandes durch Stereonema Chthonoblastus Al. Br. Schrifen Physik.-Oekon. Ges. Koenigsberg Preussen 2:127–130Google Scholar
  62. Kupffer KR (1924) Steronema chthonoblastes, eine lebende Urflechte. Korrespondenzbl. Naturf Ver Riga 58:111–112Google Scholar
  63. Kützing FT (1849) Species algarum. F.A. Brockhaus, LeipzigGoogle Scholar
  64. Lange OL, Kidron GJ, Büdel B, Meyer A, Kilian E, Abeliovich A (1992) Taxonomic composition and photosynthetic characteristics of the “biological soil crusts” covering sand dunes in the western Negev Desert. Funct Ecol 6:519–527CrossRefGoogle Scholar
  65. Leach W (1931) On the importance of some mosses as pioneers on unstable soils. J Ecol 19:98–102CrossRefGoogle Scholar
  66. Linné C (1774) Systema vegetabilium—secundum—classes ordines—genera species—cum characteribus et differentiis. Adornata Murray JA. Jo. Crist. Dieterich, Gottingae, GothaeGoogle Scholar
  67. Looman J (1964) The distribution of some lichen communities in the prairie provinces and adjacent parts of the great plains. Bryologist 67:209–224CrossRefGoogle Scholar
  68. Loope WL, Gifford GF (1972) Influence of a soil microfloral crust on select properties of soils under pinyon-juniper in southeastern Utah. J Soil Water Conserv 27:164–167Google Scholar
  69. Lorentz PG (1867) Über die Moose, die Hr. Ehrenberg in den Jahren 1820–1826 in Aegypten, der Sinaihalbinsel und Syrien gesammelt. Abh Königl Akad Wiss 1867:1–57Google Scholar
  70. Marathe KV (1972) Role of some blue-green algae in soil aggregation. In: Desikachary TV (ed) Taxonomy and biology of blue-green algae. Bangalore Press, Bangalore, pp 328–331Google Scholar
  71. Marstaller R (1971) Zur Kenntnis der Gesellschaften des Toninion-Verbandes im Unstruttal zwischen Nebra und Artern sowie im Kyffhäusergebirge. Hercynia 8:34–51Google Scholar
  72. Martin TL (1939) The occurrence of algae in some virgin Utah soils. Soil Sci Soc Am Proc 4:249–250CrossRefGoogle Scholar
  73. Martin JP, Waksman SA (1940) Influence of microorganisms on soil aggregation and erosion. Soil Sci 150:29–47CrossRefGoogle Scholar
  74. Mayland HF, MacIntosh TH, Fuller WH (1966) Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci Soc Am Proc 30:56–60CrossRefGoogle Scholar
  75. Metting B (1991) Biological surface features of semiarid lands and deserts. In: Skujins J (ed) Semiarid lands and deserts: soil resource and reclamation. Marcel Dekker, New York, pp 257–293Google Scholar
  76. Micheli PA (1729) Nova plantarum genera—iuxta Tournefortii methodum disposita. Paperini, Florenz (Reprint 1976, The Richmond Publishing Co. Ltd., Richmond, Surrey)Google Scholar
  77. Mollenhauer D (1985–1986) Blaualgen der Gattung Nostoc—ihre Rolle in Forschung und Wissenschaftsgeschichte I–IV. Natur und Museum 115:305–334, 369–379, 116:43–59, 104–120Google Scholar
  78. Moore EJ (1931) The ecology of the Ayreland of Bride, Isle of Man. J Ecol 19:115–136CrossRefGoogle Scholar
  79. Müller (Argoviensis) J (1880) Les lichens d’Egypte. Revue Mycologique. Toulouse 1879:6–21Google Scholar
  80. Nylander W (1878) Symbolae quaedam ad lichenographiam Sahariensem. Flora 61:337–345Google Scholar
  81. Pallas PS (1776) Reise durch verschiedene Provinzen des Russischen Reiches in einem ausführlichen Auszuge. Johann Georg Fleischer, Frankfurt, LeipzigGoogle Scholar
  82. Pause SM (1997) Die Erdflechtenvegetation Nordwestdeutschlands und einiger Randgebiete. Bibl Lichenol 66:1–222Google Scholar
  83. Phillipson J (1935) Some algae of Victorian soils. Proc Roy Soc Victoria 47:262–287Google Scholar
  84. Reimers H (1940) Bemerkenswerte Moos- und Flechtengesellschaften auf Zechstein-Gips am Südrand des Kyffhäuser und des Harzes. Hedwigia 79:61–174Google Scholar
  85. Reimers H (1950) Beiträge zur Kenntis der Bunten Erdflechten-Gesellschaft. I. Zur Systematik und Verbreitung der Charakterflechten der Gesellschaft besonders im Harzvorland. Ber Deut Bot Ges 68:147–156Google Scholar
  86. Rogers RW (1972) Soil surface lichens in arid and subarid south-eastern Australia III. Aust J Bot 20:301–316CrossRefGoogle Scholar
  87. Rogers RW (1989) Blue-green algae in southern Australian rangeland soils. Aust Range J 11:67–73CrossRefGoogle Scholar
  88. Rogers RW, Lange RT (1966) Nitrogen fixation by lichens of arid soil crusts. Nature 209:96–97CrossRefGoogle Scholar
  89. Rudolph ED (1963) Vegetation of Hallett station area, Victoria Land, Antarctica. Ecology 44:585–586CrossRefGoogle Scholar
  90. Rychert R, Skujins J, Sorenson D, Porcella D (1978) Nitrogen fixation by lichens and free-living microorganisms in deserts. In: West NE, Skujins J (eds) Nitrogen in desert ecosystems. Dowden, Hutchinson & Ross, Stroudsburg, pp 20–30Google Scholar
  91. Sachs J (1874) Lehrbuch der Botanik. Wilhelm Engelmann, LeipzigGoogle Scholar
  92. Schiff L, Yoder R (1941) Dynamics of water erosion on land surfaces. Trans Am Geophys Union 1941(2):287–298CrossRefGoogle Scholar
  93. Schmid G (1942) Goethe über Tremella. Werkst. Burg Giebichenstein, HalleGoogle Scholar
  94. Schmid G (1951) Irrlicht und Sternschnuppen. Viermonatsschr NF Jb Goethe-Ges 13:268–289Google Scholar
  95. Schubert R (1973) Notizen zur Flechtenflora des nördlichen Mesopotamien (Irak). Feddes Repertorium 83:585–589CrossRefGoogle Scholar
  96. Schubert R, Klement O (1971) Beitrag zur Flechtenflora der Mongolischen Volksrepublik. Feddes Repertorium 82:187CrossRefGoogle Scholar
  97. Scott GM (1982) Desert bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, London, pp 105–122CrossRefGoogle Scholar
  98. Shachak M, Steinberger Y (1980) An algae-desert snail food chain: energy flow and soil turnover. Oecologia 46:402–411CrossRefGoogle Scholar
  99. Shields LM, Durrell LW (1964) Algae in relation to soil fertility. Bot Rev 30:92–128CrossRefGoogle Scholar
  100. Shields LM, Mitchell C, Drouet F (1957) Alga- and lichen-stabilized surface crusts as soil nitrogen sources. Am J Bot 44:489–498CrossRefGoogle Scholar
  101. Skottsberg C (1905) Some remarks upon the geographical distribution of vegetation in the colder southern hemisphere. Ymer 25:402–427Google Scholar
  102. Smith JE, Sowerby J (1803) English botany; or, coloured figures of British plants, vol 16, no. 1139, LondonGoogle Scholar
  103. St. Clair LL, Johansen JR (1993) Introduction to the symposium on soil crust communities. Great Basin Nat 53:1–4Google Scholar
  104. Stahl E (1877) Beiträge zur Entwicklungsgeschichte der Flechten II, Über die Bedeutung der Hymenialgonidien. Arthur Felix, LeipzigGoogle Scholar
  105. Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Ann Rev Microbiol 31:225–274CrossRefGoogle Scholar
  106. Steiner J (1895) Ein Beitrag zur Flechtenflora der Sahara. Sitzungsber Kaiserl Akad Wiss Wien Math-naturwiss Kl 104:382–393Google Scholar
  107. Stodiek E (1937) Soziologische und ökologische Untersuchungen an den xerotopen Moosen und Flechten des Muschelkalkes in der Umgebung von Jena. Fedde Rep Spec Nov Regni Veg Beih 99:1–46Google Scholar
  108. Tchan YT (1959) Study of soil algae III. Bioassay of soil fertility by algae. Plant Soil 10:220–232CrossRefGoogle Scholar
  109. Thiselton Dyer WT (1872) On a substance known as “Australian caoutchouc”. J Bot 1:103–106, New SeriesGoogle Scholar
  110. Thunberg CP (1823) Flora capensis. Cotta, StuttgardGoogle Scholar
  111. Tomin, MP (1926) Über die Bodenflechten aus den Halbwüsten von Süd-Ost-Russland (translated from Russia). In: Keller BA (ed) Die Pflanzenwelt der russischen Steppen, Halbwüsten und Wüsten (translated from Russia), vol 2. Voronezh, pp 19–31Google Scholar
  112. Treub M (1888) Notice sur la nouvelle flora de Krakatau. Ann Jard Bot Buitenzorg 7:35–38Google Scholar
  113. Tuckerman E (1882) A synopsis of the North American lichens 1. Cassino, BostonCrossRefGoogle Scholar
  114. Tuckerman E (1888) A synopsis of the North American lichens 2. Anthony & Sons, New Bedford, MassGoogle Scholar
  115. Turpin PJF (1838) Étude microscopique, comparée, de la Barégine de M. Longchamp, observée dans les eaux thermales sulfureuses de Barége, et de la Barégine recueillie dans les eaux thermales sulfureuses de Néris, par M. Robiquet. Mém Acad Sci Paris 15:355–382Google Scholar
  116. Ugolini FC (1966) Soils. In: Soil development and ecological succession in a deglaciated area of Muir Inlet, Southeast Alaska. Institute of Polar Studies, Report 20. Ohio State University, Columbus, Ohio, pp 29–72Google Scholar
  117. Vaucher JP (1803) Histoire des Conferves d’eau douce. J.J. Paschoud, GenèveGoogle Scholar
  118. Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Schilderung. Beitr Biol Pfl 31:45–135Google Scholar
  119. von Humboldt A (1859) Ansichten der Natur mit wissenschaftlichen Erläuterungen, 2nd edn. Cotta’scher Verlag, StuttgartGoogle Scholar
  120. West NE (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Adv Ecol Res 20:179–223CrossRefGoogle Scholar
  121. West NE, Skujins J (1977) The nitrogen cycle in North American cold winter semi-desert ecosystems. Oecol Plant 12:45–53Google Scholar
  122. Wilson W, Hooker JD (1847) Musci. In: Hooker JD (ed) The botany of the Antarctic voyage of H. M. Discovery ships Erebus and Terror in the years 1839–43, under the command of Captain Sir James Clark Ross, 1. Flora Antarctica, Part II. Reeve Brothers, London, pp 395–423, 550–551Google Scholar
  123. Worley IA (1973) The “black crust” phenomenon in Upper Glacier Bay, Alaska. Northwest Sci 47:20–29Google Scholar
  124. Zólyomi B (1987) Buntflechten-Moos und Lebermoos Synusien. In: Pócs T, Simon T, Tuba Z, Pondani J (eds) Proceedings of the IAB Conference of Bryology. Symposia Biologica Hungarica 35:375–378Google Scholar
  125. Zukal H (1896) Morphologische und biologische Untersuchungen über die Flechten, 3. Abh. Sitzungsber Kaiserl Akad Wiss Wien, Mathem-naturw Cl 15:197–264Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Julius-von-Sachs-Institut für BiowissenschaftenUniversität WürzburgWürzburgGermany
  2. 2.Southwest Biological Science CenterU.S. Geological SurveyMoabUSA

Personalised recommendations