Advertisement

Interactions of Biological Soil Crusts with Vascular Plants

  • Yuanming ZhangEmail author
  • Asa L. Aradottir
  • Marcelo Serpe
  • Bertrand Boeken
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

Biocrusts and vascular plants interact on many levels. The nature and consequences of these interactions vary with biocrust and plant characteristics and environmental conditions and throughout the plants’ life cycle. Biocrust structure and surface texture—shaped by its species composition and the environment—interacting with seed shape and size, determine whether the crust facilitates or deters seed capture and thus seedling establishment. In general, biocrusts tend to enhance plant growth through improved availability of nutrients, but root architecture plays a role in determining the effect of crusts on nutrient uptake. Furthermore, exchange of nutrients between biocrusts and vascular plants can occur through different pathways, including fungal linkages. Vascular plant communities also affect biocrust development, composition, and function through canopy shading, litterfall, and root activity and their effects on microclimate. The vascular plant canopy tends to favor certain biocrust species groups over others and usually enhances biocrust formation; however, a dense canopy can deprive crusts of adequate light for photosynthesis. Likewise, light litterfall may protect or favor biocrusts by improving the microclimatic conditions, while heavy litterfall can bury, damage, or destroy the crusts.

Keywords

Vascular Plant Biological Soil Crust Litter Cover Gurbantunggut Desert Crustose Lichen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal 6:291–297CrossRefGoogle Scholar
  2. Aradottir AL, Arnalds O (2001) Ecosystem degradation and restoration of birch woodlands in Iceland. In: Wielgolaski FE (ed) Nordic Mountain birch ecosystems. UNESCO/Parthenon, Paris/Carnforth, pp 295–308Google Scholar
  3. Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449–459. doi: 10.1006/jare.2001.0925 CrossRefGoogle Scholar
  4. Baskin CC, Baskin JM (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. Academic Press, New YorkGoogle Scholar
  5. Bates ST, Nash TH, Garcia-Pichel F (2012) Patterns of diversity for fungal assemblages of biological soil crusts from the southwestern United States. Mycologia 104:353–361PubMedCrossRefGoogle Scholar
  6. Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189CrossRefGoogle Scholar
  7. Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. doi: 10.1002/hyp.6325 CrossRefGoogle Scholar
  8. Belnap J (2011) Biological phosphorus cycling in dryland regions. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling, vol 26. Springer, Berlin, pp 371–406. doi: 10.1007/978-3-642-15271-9_15 CrossRefGoogle Scholar
  9. Belnap J, Gardner JS (1993) Soil microstructure in soils of the Colorado Plateau-the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat 53:40–47Google Scholar
  10. Belnap J, Harper K (1995) Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants. Arid Land Res Manage 9:107–115Google Scholar
  11. Belnap J, Weber B (2013) Biological soil crusts as an integral component of desert environments. Ecol Process 2:11CrossRefGoogle Scholar
  12. Belnap J, Prasse R, Harper KT (2003) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management, vol 150, Ecological studies. Springer, Berlin, pp 281–300CrossRefGoogle Scholar
  13. Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:63–76CrossRefGoogle Scholar
  14. Benassi M, Stark LR, Brinda JC, McLetchie DN, Bonine M, Mishler BD (2011) Plant size, sex expression and sexual reproduction along an elevation gradient in a desert moss. Bryologist 114:277–288CrossRefGoogle Scholar
  15. Berkeley A, Thomas AD, Dougill AJ (2005) Cyanobacterial soil crusts and woody shrub canopies in Kalahari rangelands. Afr J Ecol 43:137–145CrossRefGoogle Scholar
  16. Bertiller MB, Ares JO (2011) Does sheep selectivity along grazing paths negatively affect biological crusts and soil seed banks in arid shrublands? A case study in the Patagonian Monte, Argentina. J Environ Manage 92:2091–2096. doi: 10.1016/j.jenvman.2011.03.027 PubMedCrossRefGoogle Scholar
  17. Beyschlag W, Wittland M, Jentsch A, Steinlein T (2008) Soil crusts and disturbance benefit plant germination, establishment and growth on nutrient deficient sand. Basic Appl Ecol 9:243–252. doi: 10.1016/j.baae.2007.03.002 CrossRefGoogle Scholar
  18. Blackwell P (2000) Management of water repellency in Australia, and risks associated with preferential flow, pesticide concentration and leaching. J Hydrol 231:384–395CrossRefGoogle Scholar
  19. Bliss LC, Gold WG (1999) Vascular plant reproduction, establishment, and growth and the effects of cryptogamic crusts within a polar desert ecosystem, Devon Island, N.W.T., Canada. Can J Bot 77:623–636Google Scholar
  20. Boeken B (2008) The role of seedlings in the dynamics of dryland ecosystems-their response to and involvement in dryland heterogeneity, degradation, and restoration. In: Leck MA, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 307–331CrossRefGoogle Scholar
  21. Boeken B, Orenstein D (2001) The effect of plant litter on ecosystem properties in a Mediterranean semi-arid shrubland. J Veg Sci 12:825–832. doi: 10.2307/3236870 CrossRefGoogle Scholar
  22. Boeken B, Shachak M (1994) Desert plant communities in human-made patches - implications for management. Ecol Appl 4:702–716CrossRefGoogle Scholar
  23. Boeken B, Shachak M (2006) Linking community and ecosystem processes: the role of minor species. Ecosystems 9:119–127CrossRefGoogle Scholar
  24. Boeken B, Ariza C, Gutterman Y, Zaady E (2004) Environmental factors affecting dispersal, germination and distribution of Stipa capensis in the Negev Desert, Israel. Ecol Res 19:533–540. doi: 10.1111/j.1440-1703.2004.00666.x CrossRefGoogle Scholar
  25. Boudell JA, Link SO, Johansen JR (2002) Effect of soil microtopography on seed bank distribution in the shrub-steppe. West N Am Nat 62:14–24Google Scholar
  26. Bowker MA, Belnap J, Miller ME (2006) Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangeland Ecol Manage 59:519–529CrossRefGoogle Scholar
  27. Bowker MA, Maestre FT, Escolar C (2010) Biocrusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol Biochem 42:405–417. doi: 10.1016/j.soilbio.2009.10.025 CrossRefGoogle Scholar
  28. Breen K, Levesque E (2008) The influence of biological soil crusts on soil characteristics along a High Arctic glacier foreland, Nunavut, Canada. Arct Antarct Alp Res 40:287–297. doi: 10.1657/1523-0430(06-098)[breen]2.0.co;2 CrossRefGoogle Scholar
  29. Briggs A, Morgan JW (2008) Morphological diversity and abundance of biological soil crusts differ in relation to landscape setting and vegetation type. Aust J Bot 56:246–253CrossRefGoogle Scholar
  30. Briggs AL, Morgan JW (2011) Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecol 212:91–103. doi: 10.1007/s11258-010-9806-x CrossRefGoogle Scholar
  31. Brotherson JD, Rushforth SR (1983) Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Nat 43:73–78Google Scholar
  32. Chen LZ, Li DH, Liu YD (2003) Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J Arid Environ 55:645–656. doi: 10.1016/S0140-1963(02)00292-6 CrossRefGoogle Scholar
  33. Clements DR, Krannitz PG, Gillespie SM (2007) Seed bank responses to grazing history by invasive and native plant species in a semi-desert shrub-steppe environment. Northwest Sci 81:37–49CrossRefGoogle Scholar
  34. Cole C, Stark L, Bonine M, McLetchie D (2010) Transplant survivorship of bryophyte soil crusts in the Mojave Desert. Restor Ecol 18:198–205CrossRefGoogle Scholar
  35. Concostrina-Zubiri L, Huber-Sannwald E, Martinez I, Flores Flores JL, Escudero A (2013) Biological soil crusts greatly contribute to small-scale soil heterogeneity along a grazing gradient. Soil Biol Biochem 64:28–36. doi: 10.1016/j.soilbio.2013.03.029 CrossRefGoogle Scholar
  36. Cortina J, Martin N, Maestre FT, Bautista S (2010) Disturbance of the biological soil crusts and performance of Stipa tenacissima in a semi-arid Mediterranean steppe. Plant Soil 334:311–322CrossRefGoogle Scholar
  37. Danin A, Nukrian R (1991) Dynamics of dune vegetation in the southern coastal area of Israel since 1945. Doc Phytosociologiques 13:281–296Google Scholar
  38. Davidson DW, Bowker M, George D, Phillips SL, Belnap J (2002) Treatment effects on performance of N-fixing lichens in disturbed soil crusts of the Colorado Plateau. Ecol Appl 12:1391–1405. doi: 10.2307/3099979 CrossRefGoogle Scholar
  39. DeFalco LA, Detling JK, Tracy CR, Warren SD (2001) Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert. Plant Soil 234:1–14. doi: 10.1023/a:1010323001006 CrossRefGoogle Scholar
  40. Deines L, Rosentreter R, Eldridge DJ, Serpe MD (2007) Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 295:23–35. doi: 10.1007/s11104-007-9256-y CrossRefGoogle Scholar
  41. Dettweiler-Robinson E, Bakker JD, Grace JB (2013) Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. J Arid Environ 94:96–104CrossRefGoogle Scholar
  42. Drahorad SL, Steckenmesser D, Felix-Henningsen P, Lu L, Rodny M (2013) Ongoing succession of biological soil crusts increases water repellency - a case study on Arenosols in Sekule, Slovakia. Biologia 68:1089–1093. doi: 10.2478/s11756-013-0247-6 CrossRefGoogle Scholar
  43. Elbaz S (2012) Atractylis serratuloides establishment and its role in patch formation in northern Negev shrubland. M.Sc. thesis Ben-Gurion University of the Negev, IsraelGoogle Scholar
  44. Elbert W, Weber B, Burrows S, Steinkamp J, Buedel B, Andreae MO, Poeschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462. doi: 10.1038/ngeo1486 CrossRefGoogle Scholar
  45. Eldridge DJ, Lepage M, Bryannah MA, Ouedraogo P (2001) Soil biota in banded landscapes. In: Tongway DJ, Valentin C, Seghieri J (eds) Banded vegetation patterning in arid and semi-arid environments: ecological processes and consequences for management. Springer, New York, pp. 105–131Google Scholar
  46. Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40:323–336. doi: 10.1016/s0341-8162(00)00082-5 CrossRefGoogle Scholar
  47. Eldridge DJ, Zaady E, Shachak M (2002) Microphytic crusts, shrub patches and water harvesting in the Negev Desert: the Shikim system. Landsc Ecol 17:587–597. doi: 10.1023/a:1021575503284 CrossRefGoogle Scholar
  48. Elmarsdottir A, Aradottir AL, Trlica MJ (2003) Microsite availability and establishment of native species on degraded and reclaimed sites. J Appl Ecol 40:815–823. doi: 10.1046/j.1365-2664.2003.00848.x CrossRefGoogle Scholar
  49. Escudero A, Martinez I, de la Cruz A, Otalora MAG, Maestre FT (2007) Soil lichens have species-specific effects on the seedling emergence of three gypsophile plant species. J Arid Environ 70:18–28. doi: 10.1016/j.jaridenv.2006.12.019 CrossRefGoogle Scholar
  50. Evans RD, Belnap J (1999) Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80:150–160. doi: 10.1890/0012-9658(1999)080[0150:ltcodo]2.0.co;2 CrossRefGoogle Scholar
  51. Facelli JM, Pickett STA (1991) Plant litter-light interception and effects on an old-field plant community. Ecology 72:1024–1031CrossRefGoogle Scholar
  52. Favero-Longo SE, Piervittori R (2010) Lichen-plant interactions. J Plant Interact 5:163–177. doi: 10.1080/17429145.2010.492917 CrossRefGoogle Scholar
  53. Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  54. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523. doi: 10.1111/j.1469-8137.2006.01787.x PubMedCrossRefGoogle Scholar
  55. Frahm JP, Specht A, Reifenrath K, Vargas YL (2000) Allelopathic effect of crustaceous lichens on epiphytic bryophytes and vascular plants. Nova Hedwigia 70:245–254Google Scholar
  56. Gao S, Ye X, Chu Y, Dong M (2010) Effects of biological soil crusts on profile distribution of soil water, organic carbon and total nitrogen in Mu Us Sandland, China. J Plant Ecol 3:279–284. doi: 10.1093/jpe/rtq015 CrossRefGoogle Scholar
  57. George DB, Davidson DW, Schliep KC, Patrell-Kim LJ (2000) Microtopography of microbiotic crusts on the Colorado Plateau, and distribution of component organisms. West N Am Nat 60:343–354Google Scholar
  58. Godinez-Alvarez H, Morin C, Rivera-Aguilar V (2012) Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert. Plant Biol 14:157–162. doi: 10.1111/j.1438-8677.2011.00495.x PubMedGoogle Scholar
  59. Golodets C, Boeken B (2006) Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties. Catena 65:285–291CrossRefGoogle Scholar
  60. Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085. doi: 10.1111/j.1365-2745.2008.01388.x CrossRefGoogle Scholar
  61. Gros A, Poethke HJ, Hovestadt T (2006) Evolution of local adaptations in dispersal strategies. Oikos 114:544–552CrossRefGoogle Scholar
  62. Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145CrossRefGoogle Scholar
  63. Gryndler M, Hrselova H, Sudova R, Gryndlerova H, Rezacova V, Merhautova V (2005) Hyphal growth and mycorrhiza formation by the arbuscular mycorrhizal fungus Glomus claroideum BEG 23 is stimulated by humic substances. Mycorrhiza 15:483–488. doi: 10.1007/s00572-005-0352-7 PubMedCrossRefGoogle Scholar
  64. Guo Y, Zhao H, Zuo X, Drake S, Zhao X (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54:653–662. doi: 10.1007/s00254-007-1130-y CrossRefGoogle Scholar
  65. Gutterman Y, Shem-Tov S (1997) The efficiency of the strategy of mucilaginous seeds of some common annuals of the Negev adhering to the soil crust to delay collection by ants. Isr J Plant Sci 45:317–327CrossRefGoogle Scholar
  66. Hamerlynck EP, Csintalan Z, Nagy Z, Tuba Z, Goodin D, Henebry GM (2002) Ecophysiological consequences of contrasting microenvironments on the desiccation tolerant moss Tortula ruralis. Oecologia 131:498–505. doi: 10.1007/s00442-002-0925-5 CrossRefGoogle Scholar
  67. Harel Y, Ohad I, Kaplan A (2004) Activation of photosynthesis and resistance to photoinhibition in cyanobacteria within biological desert crust. Plant Physiol 136:3070–3079PubMedPubMedCentralCrossRefGoogle Scholar
  68. Harper JL (1977) Population biology of plants. Academic Press, New YorkGoogle Scholar
  69. Harper KT, Belnap J (2001) The influence of biological soil crusts on mineral uptake by associated vascular plants. J Arid Environ 47:347–357. doi: 10.1006/jare.2000.0713 CrossRefGoogle Scholar
  70. Hawkes CV (2003) Nitrogen cycling mediated by biological soil crusts and arbuscular mycorrhizal fungi. Ecology 84:1553–1562. doi: 10.1890/0012-9658(2003)084[1553:NCMBBS]2.0.co;2 CrossRefGoogle Scholar
  71. Hawkes CV (2004) Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought. Plant Ecol 170:121–134. doi: 10.1023/b:vege.0000019035.56245.91 CrossRefGoogle Scholar
  72. He XH, Xu MG (2009) Use of (15)N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118CrossRefGoogle Scholar
  73. Hernandez RR, Sandquist DR (2011) Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub. Plant Ecol 212:1709–1721CrossRefGoogle Scholar
  74. Herrnstadt I, Kidron GJ (2005) Reproductive strategies of Bryum dunense in three microhabitats in the Negev Desert. Bryologist 108:101–109CrossRefGoogle Scholar
  75. Hilty JH, Eldridge DJ, Rosentreter R, Wicklow-Howard MC, Pellant M (2004) Recovery of biological soil crusts following wildfire in Idaho. J Range Manage 57:89–96CrossRefGoogle Scholar
  76. Hodge A (2014) Interactions between arbuscular mycorrhizal fungi and organic material substrates. Adv Appl Microbiol 89:47–99. doi: 10.1016/b978-0-12-800259-9.00002-0 PubMedCrossRefGoogle Scholar
  77. Hui R, Li XR, Chen CY, Zhao X, Jia R, Liu L, Wei Y (2013) Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-B radiation. Physiol Plant 147:489–501. doi: 10.1111/j.1399-3054.2012.01679.x PubMedCrossRefGoogle Scholar
  78. Jensen K, Gutekunst K (2003) Effects of litter on establishment of grassland plant species: the role of seed size and successional status. Basic Appl Ecol 4:579–587CrossRefGoogle Scholar
  79. Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696PubMedCrossRefGoogle Scholar
  80. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647. doi: 10.1111/j.1469-8137.2009.03110.x PubMedCrossRefGoogle Scholar
  81. Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase-activity of arbuscular mycorrhizal hyphae as influenced by soil organic-matter. Soil Biol Biochem 27:1153–1159. doi: 10.1016/0038-0717(95)00047-i CrossRefGoogle Scholar
  82. Jumpponen A, Vare H, Mattson KG, Ohtonen R, Trappe JM (1999) Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain. J Ecol 87:98–105CrossRefGoogle Scholar
  83. Karlsdottir L, Aradottir AL (2006) Propagation of Dryas octopetala L. and Alchemilla alpina L. by direct seeding and planting of stem cuttings. Iceland Agric Sci 19:25–32Google Scholar
  84. Kidron GJ, Büdel B (2014) Contrasting hydrological response of coastal and desert biocrusts. Hydrol Process 28:361–371. doi: 10.1002/hyp.9587 CrossRefGoogle Scholar
  85. Kidron GJ, Yair A (1997) Rainfall-runoff relationship over encrusted dune surfaces, Nizzana, Western Negev, Israel. Earth Surface Process Landforms 22:1169–1184CrossRefGoogle Scholar
  86. Lan SB, Zhang QY, Wu L, Liu YD, Zhang DL, Hu CX (2014) Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol 48:307–315. doi: 10.1021/es403785j PubMedCrossRefGoogle Scholar
  87. Lange OL (2003) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 217–240Google Scholar
  88. Langhans TM, Storm C, Schwabe A (2009) Biological soil crusts and their microenvironment: impact on emergence, survival and establishment of seedlings. Flora 204:157–168. doi: 10.1016/j.flora.2008.01.001 CrossRefGoogle Scholar
  89. Langhans TM, Storm C, Schwabe A (2010) Regeneration processes of biological soil crusts, macro-cryptogams and vascular plant species after fine-scale disturbance in a temperate region: recolonization or successional replacement? Flora 205:46–60. doi: 10.1016/j.flora.2008.12.001 CrossRefGoogle Scholar
  90. Lesica P, Shelly JS (1992) Effects of cryptogamic soil crust on the population dynamics of Arabis fecunda (Brassicaceae). Am Midl Nat 128:53–60CrossRefGoogle Scholar
  91. Li XR, Jia XH, Long LQ, Zerbe S (2005) Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N. China). Plant Soil 277:375–385. doi: 10.1007/s11104-005-8162-4 CrossRefGoogle Scholar
  92. Li SZ, Xiao HL, Cheng GD, Luo F, Liu LC (2006) Mechanical disturbance of microbiotic crusts affects ecohydrological processes in a region of revegetation-fixed sand dunes. Arid Land Res Manage 20:61–77. doi: 10.1080/15324980500369467 CrossRefGoogle Scholar
  93. Li J, Zhao CY, Song YJ, Seng Y, Zhu H (2007) Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. J Arid Environ 71:350–361CrossRefGoogle Scholar
  94. Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007) Glomeromycotean associations in liverworts: a molecular cellular and taxonomic analysis. Am J Bot 94:1756–1777. doi: 10.3732/ajb.94.11.1756 PubMedCrossRefGoogle Scholar
  95. Liu H, Tao Y, Qiu D, Zhang D, Zhang Y (2013) Effects of artificial sand fixing on community characteristics of a rare desert shrub. Conserv Biol 27:1011–1019. doi: 10.1111/cobi.12084 PubMedCrossRefGoogle Scholar
  96. Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S, Maltez-Mouro S, García-Palacios P, Castillo-Monroy AP, Martínez I, Escudero A (2010) Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos Trans R Soc B 365:2057–2070CrossRefGoogle Scholar
  97. Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603. doi: 10.1093/Aob/Mch178 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Marteinsdottir B, Svavarsdottir K, Thorhallsdottir TE (2010) Development of vegetation patterns in early primary succession. J Veg Sci 21:531–540. doi: 10.1111/j.1654-1103.2009.01161.x CrossRefGoogle Scholar
  99. Martinez I, Escudero A, Maestre FT, de la Cruz A, Guerrero C, Rubio A (2006) Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust J Bot 54:339–348CrossRefGoogle Scholar
  100. Megill L, Walker LR, Vanier C, Johnson D (2011) Seed bank dynamics and habitat indicators of Arctomecon californica, area plant in a fragmented desert environment. West N Am Nat 71:195–205CrossRefGoogle Scholar
  101. Milton S (2004) Grasses as invasive alien plants in South Africa. South Afr J Sci 100:69–75Google Scholar
  102. Molnar K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Zeitschrift Fur Naturforschung Sect C J Biosci 65:157–173Google Scholar
  103. Morgan JW (2006) Bryophyte mats inhibit germination of non-native species in burnt temperate native grassland remnants. Biol Invasions 8:159–168. doi: 10.1007/s10530-004-2881-y CrossRefGoogle Scholar
  104. Muller E, Cooper EJ, Alsos IG (2011) Germinability of arctic plants is high in perceived optimal conditions but low in the field. Botany-Botanique 89:337–348. doi: 10.1139/b11-022 CrossRefGoogle Scholar
  105. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. doi: 10.1111/j.1469-8137.2010.03611.x PubMedCrossRefGoogle Scholar
  106. Ngwene B, Gabriel E, George E (2013) Influence of different mineral nitrogen sources (NO (3) (-) -N vs. NH (4) (+) -N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices-cowpea symbiosis. Mycorrhiza 23:107–117. doi: 10.1007/s00572-012-0453-z PubMedCrossRefGoogle Scholar
  107. Niemi R, Martikainen PJ, Silvola J, Sonninen E, Wulff A, Holopainen T (2002) Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity. New Phytol 156:509–515. doi: 10.1046/j.1469-8137.2002.00532.x CrossRefGoogle Scholar
  108. Olano JM, Caballero I, Loidi J, Escudero A (2005) Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. J Veg Sci 16:215–222. doi: 10.1658/1100-9233(2005)016[0215:popcfs]2.0.co;2 CrossRefGoogle Scholar
  109. Parker DL, Schram BR, Plude JL, Moore RE (1996) Effect of metal cations on the viscosity of a pectin-like capsular polysaccharide from the cyanobacterium Microcystis flos-aquae C3-40. Appl Environ Microbiol 62:1208–1213PubMedPubMedCentralGoogle Scholar
  110. Pendleton RL, Pendleton BK, Howard GL, Warren SD (2003) Growth and nutrient content of herbaceous seedlings associated with biological soil crusts. Arid Land Res Manage 17:271–281. doi: 10.1080/15324980301598 CrossRefGoogle Scholar
  111. Peters DPC, Bestelmeyer BT, Herrick JE, Fredrickson EL, Monger HC, Havstad KM (2006) Disentangling complex landscapes: new insights into arid and semiarid system dynamics. Bioscience 56:491–501. doi: 10.1641/0006-3568(2006)56[491:dclnii]2.0.co;2 CrossRefGoogle Scholar
  112. Peterson EB (2013) Regional-scale relationship among biological soil crusts, invasive annual grasses, and disturbance. Ecol Process 2:2CrossRefGoogle Scholar
  113. Porras-Alfaro A, Herrera J, Batvig DO, Lipinski K, Sinsabaugh RL (2011) Diversity and distribution of soil fungal communities in a semiarid grassland. Mycologia 103:10–21PubMedCrossRefGoogle Scholar
  114. Prasse R, Bornkamm R (2000) Effect of microbiotic soil surface crusts on emergence of vascular plants. Plant Ecol 150:65–75CrossRefGoogle Scholar
  115. Reddy KJ, Soper BW, Tang J, Bradley RL (1996) Phenotypic variation in exopolysaccharide production in the marine, aerobic nitrogen-fixing unicellular cyanobacterium Cyanothece sp. World J Microbiol Biotechnol 12:311–318. doi: 10.1007/Bf00340206 PubMedCrossRefGoogle Scholar
  116. Rodríguez-Caballero E, Canton Y, Chamizo S, Lazaro R, Escudero A (2013) Soil loss and runoff in semiarid ecosystems: a complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems 16:529–546. doi: 10.1007/s10021-012-9626-z CrossRefGoogle Scholar
  117. Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100:447–458CrossRefGoogle Scholar
  118. Seghieri J, Galle S, Rajot JL, Ehrmann M (1997) Relationships between soil moisture and growth of herbaceous plants in a natural vegetation mosaic in Niger. J Arid Environ 36:87–102. doi: 10.1006/jare.1996.0195 CrossRefGoogle Scholar
  119. Serpe MD, Orm JM, Barkes T, Rosentreter R (2006) Germination and seed water status of four grasses on moss-dominated biological soil crusts from arid lands. Plant Ecol 185:163–178. doi: 10.1007/s11258-005-9092-1 CrossRefGoogle Scholar
  120. Serpe MD, Zimmerman SJ, Deines L, Rosentreter R (2008) Seed water status and root tip characteristics of two annual grasses on lichen-dominated biological soil crusts. Plant Soil 303:191–205. doi: 10.1007/s11104-007-9498-8 CrossRefGoogle Scholar
  121. Serpe MD, Roberts E, Eldridge DJ, Rosentreter R (2013) Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland. Soil Biol Biochem 60:220–230CrossRefGoogle Scholar
  122. Shachak M, Sachs M, Moshe I (1998) Ecosystem management of desertified shrublands in Israel. Ecosystems 1:475–483. doi: 10.1007/s100219900043 CrossRefGoogle Scholar
  123. Singh J, Gautam S, Pant AB (2012) Effect of UV-B radiation on UV absorbing compounds and pigments of moss and lichen of Schirmacher Oasis region, East Antarctica. Cell Mol Biol 58:80–84. doi: 10.1170/T924 PubMedGoogle Scholar
  124. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057PubMedPubMedCentralCrossRefGoogle Scholar
  125. St. Clair LL, Webb BL, Johansen JR, Nebeker GT (1984) Cryptogamic soil crusts - enhancement of seedling establishment in disturbed and undisturbed areas. Reclam Reveg Res 3:129–136Google Scholar
  126. Su YG, Li XR, Cheng YW, Tan HJ, Jia RL (2007) Effects of biological soil crusts on emergence of desert vascular plants in North China. Plant Ecol 191:11–19. doi: 10.1007/s11258-006-9210-8 CrossRefGoogle Scholar
  127. Thiet RK, Doshas A, Smith SM (2014) Effects of biocrusts and lichen-moss mats on plant productivity in a US sand dune ecosystem. Plant Soil 377:235–244CrossRefGoogle Scholar
  128. Tigre RC, Silva NH, Santos MG, Honda NK, Falcao EPS, Pereira EC (2012) Allelopathic and bioherbicidal potential of Cladonia verticillaris on the germination and growth of Lactuca sativa. Ecotoxicol Environ Saf 84:125–132. doi: 10.1016/j.ecoenv.2012.06.026 PubMedCrossRefGoogle Scholar
  129. Tsoar H (2005) Sand dunes mobility and stability in relation to climate. Phys A Stat Mech Appl 357:50–56CrossRefGoogle Scholar
  130. Tu C, Booker FL, Watson DM, Chen X, Rufty TW, Shi W, Hu S (2006) Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Glob Change Biol 12:793–803CrossRefGoogle Scholar
  131. Van der Hoeven EC, Korporaal M, Van Gestel E (1998) Effects of simulated shade on growth, morphology and competitive interactions in two pleurocarpous mosses. J Bryol 20:301–310CrossRefGoogle Scholar
  132. Van Wijk MT (2011) Understanding plant rooting patterns in semi-arid systems: an integrated model analysis of climate, soil type and plant biomass. Glob Ecol Biogeogr 20:331–342. doi: 10.1111/j.1466-8238.2010.00601.x CrossRefGoogle Scholar
  133. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633PubMedCrossRefGoogle Scholar
  134. Whiteside MD, Garcia MO, Treseder KK (2012) Amino acid uptake in arbuscular mycorrhizal plants. PLoS One 7:e47643. doi: 10.1371/journal.pone.0047643 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wu Y, Rao B, Wu P, Liu Y, Li G, Li D (2013) Development of artificially induced biological soil crusts in fields and their effects on top soil. Plant Soil 370:115–124. doi: 10.1007/s11104-013-1611-6 CrossRefGoogle Scholar
  136. Xie ZM, Wang YX, Liu YD, Liu YM (2009) Ultraviolet-B exposure induces photo-oxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom. Eur J Soil Biol 45:377–382. doi: 10.1016/j.ejsobi.2009.04.003 CrossRefGoogle Scholar
  137. Xiong SJ, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994CrossRefGoogle Scholar
  138. Xu SJ, Liu CJ, Jiang PA, Cai WM, Wang Y (2009) The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis. Sci Total Environ 407:2411–2419. doi: 10.1016/j.scitotenv.2008.12.005 PubMedCrossRefGoogle Scholar
  139. Yan DR (2009) The effects of biocrusts on the nutrient absorption of vascular plants. J Arid Land Resour Environ 23:177–181Google Scholar
  140. Zaady E, Gutterman Y, Boeken B (1997) The germination of mucilaginous seeds of Plantago coronopus, Reboudia pinnata, and Carrichtera annua on cyanobacterial soil crust from the Negev Desert. Plant Soil 190:247–252CrossRefGoogle Scholar
  141. Zaady E, Boeken B, Ariza C, Gutterman Y (2003) Light, temperature, and substrate effects on the germination of three Bromus species in comparison with their abundance in the field. Isr J Plant Sci 51:267–273CrossRefGoogle Scholar
  142. Zamfir M (2000) Effects of bryophytes and lichens on seedling emergence of alvar plants: evidence from greenhouse experiments. Oikos 88:603–611. doi: 10.1034/j.1600-0706.2000.880317.x CrossRefGoogle Scholar
  143. Zhang YM, Nie HL (2011) Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, western China. Chin J Plant Ecol 35:380–388. doi: 10.3724/sp.j.1258.2011.00380 CrossRefGoogle Scholar
  144. Zhang YM, Wu N, Zhang BC, Zhang J (2010) Species composition, distribution patterns and ecological functions of biological soil crusts in the Gurbantunggut Desert. J Arid Land 2:180–189. doi: 10.3724/sp.j.1227.2010.00180 CrossRefGoogle Scholar
  145. Zhao Y, Zhu Q, Li P, Zhao L, Wang L, Zheng X, Ma H (2014) Effects of artificially cultivated biological soil crusts on soil nutrients and biological activities in the Loess Plateau. J Arid Land 6:742–752. doi: 10.1007/s40333-014-0032-6 CrossRefGoogle Scholar
  146. Zhuang WW, Alison D, Zhang YM (2014) The influence of biological soil crusts on 15N translocation in soil and vascular plant in a temperate desert of Northwestern China. J Plant Ecol 8:1–9. doi: 10.1093/jpe/rtu033 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yuanming Zhang
    • 1
    Email author
  • Asa L. Aradottir
    • 2
  • Marcelo Serpe
    • 3
  • Bertrand Boeken
    • 4
  1. 1.Department of Biogeography and BioresourceXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
  2. 2.Department of Environmental SciencesAgricultural University of IcelandBorgarnesIceland
  3. 3.Department of Biological SciencesBoise State UniversityBoiseUSA
  4. 4.Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevMidreshet Ben-GurionIsrael

Personalised recommendations