Hypolithic Communities

  • Stephen B. PointingEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 226)


Hypolithic microbial communities develop on the belowground surfaces of translucent stones. These stones are embedded in dryland soils with their dorsal surface exposed, and this allows sufficient light transmission for development of photoautotrophs that dominate these communities. They may be considered as isolated “islands” of biological soil crusts (biocrusts). The major substrates are quartz and marble, and these are ubiquitous in drylands worldwide. They are particularly abundant in desert pavement landscapes that are typical of the most extreme arid drylands, and therefore hypoliths assume a major ecological role under extreme aridity. This chapter describes the hypolithic habitat and how communities assemble at different spatial and temporal scales. Recent advances in understanding the ecological role of hypoliths are discussed, and the potential application of hypolithic systems in applied research is identified.


Photosynthetically Active Radiation Extracellular Polymeric Substance Biological Soil Crust Taklimakan Desert Cold Desert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I wish to thank the many valued colleagues and friends with whom I have studied hypoliths in some of the world’s most beautiful deserts and in particular Jayne Belnap, Yuki Chan, Don Cowan, Donna Lacap, Maggie Lau, Chris McKay, and Kim Warren-Rhodes.


  1. Adriaenssens EM, Van Zyl L, De Maayer P, Rubagotti E, Rybicki E, Tuffin M et al (2014) Metagenomic analysis of the viral community in Namib Desert hypoliths. Environ Microbiol 17:480–495. doi: 10.1111/1462-2920.12528 CrossRefPubMedGoogle Scholar
  2. Azúa-Bustos A, González-Silva C, Mancilla R, Salas L, Gómez-Silva B, McKay C et al (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb Ecol 61:568–581. doi: 10.1007/s00248-010-9784-5 CrossRefPubMedGoogle Scholar
  3. Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC et al (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163. doi: 10.1038/ncomms1167 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Berner T, Evenari M (1978) The influence of temperature and light penetration on the abundance of the hypolithic algae in the Negev desert of Israel. Oecologia 33:255–260. doi: 10.1007/bf00344852 CrossRefGoogle Scholar
  5. Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at gypsum rock. Appl Environ Microbiol 70:7070–7077. doi: 10.1128/AEM.70.12.7070-7077.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Broady PA (1981) The ecology of sublithic terrestrial algae at the Vestfold Hills, Antarctica. Br Phycol J 16:231–240. doi: 10.1080/00071618100650241 CrossRefGoogle Scholar
  7. Broady PA (2005) The distribution of terrestrial and hydro-terrestrial algal associations at three contrasting locations in southern Victoria Land, Antarctica. Algol Stud Archiv für Hydrobiol Suppl Vol 118:95–112. doi: 10.1127/1864-1318/2006/0118-0095 Google Scholar
  8. Büdel B, Schultz M (2003) A way to cope with high irradiance and drought: inverted morphology of a new cyanobacterial lichen, Peltula inversa sp. nov., from the Nama Karoo, Namibia. Bibl Lichenol 86:225–232Google Scholar
  9. Büdel B, Wessels DCJ (1991) Rock inhabiting blue-green algae cyanobacteria from hot arid regions. Arch Hydrobiol 92:385–398Google Scholar
  10. Cameron RE, Blank GB (1965) Soil studies—microflora of desert regions VIII. Distribution and abundance of microorganisms. Space Programs Summ 4:193–202Google Scholar
  11. Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413. doi: 10.1038/ismej.2011.21 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chan Y, Lacap DC, Lau MCY, Ha KY, Warren-Rhodes KA, Cockell CS et al (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282. doi: 10.1111/j.1462-2920.2012.02821.x CrossRefPubMedGoogle Scholar
  13. Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL (2013) Functional ecology of an Antarctic Dry Valley. Proc Natl Acad Sci USA 110:8990–8995. doi: 10.1073/pnas.1300643110 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414. doi: 10.1038/431414a CrossRefPubMedGoogle Scholar
  15. Cockell CS, Stokes MD (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic polar desert. Arct Antarct Alp Res 38:335–342. doi: 10.1657/1523-0430(2006)38[335:HCOORI]2.0.CO;2 CrossRefGoogle Scholar
  16. Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17. doi: 10.1017/S0954102001000037 CrossRefGoogle Scholar
  17. Cowan DA, Pointing SB, Stevens MI, Cary S, Stomeo F, Tuffin IM et al (2010) Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biol 34:307–311. doi: 10.1007/s00300-010-0872-2 CrossRefGoogle Scholar
  18. Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green TGA, Cary SC et al (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3:581–586. doi: 10.1111/j.1758-2229.2011.00266.x CrossRefPubMedGoogle Scholar
  19. Cowan DA, Khan N, Pointing SB, Cary SC (2012) Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:714–720. doi: 10.1017/S0954102010000507 CrossRefGoogle Scholar
  20. Daly MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 7:237–245. doi: 10.1038/nrmicro2073 CrossRefPubMedGoogle Scholar
  21. de los Rios A, Cary C, Cowan D (2014) The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biol 37:1823–1833CrossRefGoogle Scholar
  22. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462CrossRefGoogle Scholar
  23. Fierer N, Leff JJW, Adams BJ, Nielsen UN, Thomas S, Lauber CL et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395. doi: 10.1073/pnas.1215210110 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Friedmann I, Galun M (1974) Desert algae, lichens and fungi. In: Brown GW (ed) Desert biology. Academic, New York, pp 165–212CrossRefGoogle Scholar
  25. Frossard A, Ramond J-B, Seely M, Cowan DA (2015) Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Sci Rep 5:12263. doi: 10.1038/srep12263 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hall-Stoodley L, Costerton J, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. doi: 10.1038/nrmicro821 CrossRefPubMedGoogle Scholar
  27. Hopkins DW, Sparrow AD, Gregorich EG, Elberling B, Novis P, Fraser F et al (2009) Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environ Microbiol 11:597–608. doi: 10.1111/j.1462-2920.2008.01830.x CrossRefPubMedGoogle Scholar
  28. Lacap DC, Warren-Rhodes KA, McKay CP, Pointing SB (2011) Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile. Extremophiles 15:31–38. doi: 10.1007/s00792-010-0334-3 CrossRefPubMedGoogle Scholar
  29. Laity J (2008) Deserts and desert environments. Wiley-Blackwell, ChichesterGoogle Scholar
  30. Le Romancer M, Gaillard M, Geslin C, Prieur D (2007) Viruses in extreme environments. Rev Environ Sci Biotechnol 6:17–31. doi: 10.1007/s11157-006-0011-2 CrossRefGoogle Scholar
  31. Makhalanyane TP, Valverde A, Lacap DC, Pointing SB, Tuffin MI, Cowan DA (2012) Evidence of species recruitment and development of hot desert hypolithic communities. Environ Microbiol Rep 5:219–224. doi: 10.1111/1758-2229.12003 CrossRefPubMedGoogle Scholar
  32. Makhalanyane TP, Valverde A, Birkeland N-K, Cary SC, Tuffin IM, Cowan DA (2013) Evidence for successional development in Antarctic hypolithic bacterial communities. ISME J 7:2080–2090. doi: 10.1038/ismej.2013.94 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:2013–2221. doi: 10.1093/femsre/fuu011 CrossRefGoogle Scholar
  34. McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S (2012) Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol 10:39–50. doi: 10.1038/nrmicro2695 Google Scholar
  35. Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J et al (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021. doi: 10.1126/science.1089143 CrossRefPubMedGoogle Scholar
  36. Pianka E (1970) On r- and k- selection. Am Nat 104:592–597CrossRefGoogle Scholar
  37. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. doi: 10.1038/nrmicro2831 CrossRefPubMedGoogle Scholar
  38. Pointing SB, Belnap J (2014) Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers Conserv 23:1659–1667. doi: 10.1007/s10531-014-0690-x CrossRefGoogle Scholar
  39. Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424. doi: 10.1111/j.1462-2920.2006.01153.x CrossRefPubMedGoogle Scholar
  40. Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci 106:19964–19969. doi: 10.1073/pnas.0908274106 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–1929. doi: 10.1126/science.1101867 CrossRefPubMedGoogle Scholar
  42. Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA et al (1990) Biological feedbacks in global desertification. Science 247:1043–1048CrossRefPubMedGoogle Scholar
  43. Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, Southern Mojave Desert. Ecology 84:3222–3231, Available at: CrossRefGoogle Scholar
  44. Schubert R (1982) Lichens of central Asia. J Hattori Bot Lab 53:341–343Google Scholar
  45. Smith MC, Bowman JP, Scott FJ, Line MA (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct Sci 12:177–184. doi: 10.1017/S0954102000000237 Google Scholar
  46. Smith TE, Wall DH, Hogg ID, Adams BJ, Nielsen UN, Virginia RA (2012) Thawing permafrost alters nematode populations and soil habitat characteristics in an Antarctic polar desert ecosystem. Pedobiologia (Jena) 55:75–81. doi: 10.1016/j.pedobi.2011.11.001 CrossRefGoogle Scholar
  47. Stevens MI, Hogg ID (2002) Expanded distributional records of Collembola and Acari in southern Victoria Land, Antarctica. Pedobiologia (Jena) 46:485–495. doi: 10.1078/0031-4056-00154 CrossRefGoogle Scholar
  48. Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS et al (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340. doi: 10.1111/j.1574-6941.2012.01360.x CrossRefPubMedGoogle Scholar
  49. Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI et al (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17:329–337. doi: 10.1007/s00792-013-0519-7 CrossRefPubMedGoogle Scholar
  50. Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12:592–607. doi: 10.1111/j.1462-2920.2009.02098.x CrossRefPubMedGoogle Scholar
  51. UNEP (1992) World atlas of desertification. Edward Arnold, LondonGoogle Scholar
  52. Valverde A, Makhalanyane TP, Seely M, Cowan DA (2015) Cyanobacteria drive community composition and functionality in rock-soil interface communities. Mol Ecol 24:812–821. doi: 10.1111/mec.13068 CrossRefPubMedGoogle Scholar
  53. Vogel S (1955) Niedere “Fensterpflanzen” in der südafrikanischen Wüste. Eine ökologische Sondierung. Beiträge zur Biologie der Pflanzen 31:45–135Google Scholar
  54. Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez-Silva B et al (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398. doi: 10.1007/s00248-006-9055-7 CrossRefPubMedGoogle Scholar
  55. Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S et al (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482. doi: 10.1111/j.1574-6941.2007.00351.x CrossRefPubMedGoogle Scholar
  56. Warren-Rhodes KA, McKay CP, Boyle LN, Wing MR, Kiekebusch EM, Cowan DA et al (2013) Physical ecology of hypolithic communities in the central Namib Desert: The role of fog, rain, rock habitat, and light. J Geophys Res Biogeosci 118:1451–1460. doi: 10.1002/jgrg.20117 CrossRefGoogle Scholar
  57. Weber B, Büdel B (2011) Endoliths. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Heidelberg, pp 348–354CrossRefGoogle Scholar
  58. Weber B, Wessels DC, Deutschewitz K, Dojani S, Reichenberger H, Büdel B (2013) Ecological characterization of soil-inhabiting and hypolithic soil crusts within the Knersvlakte, South Africa. Ecol Process 2:8. doi: 10.1186/2192-1709-2-8 CrossRefGoogle Scholar
  59. Wei ST, Fernandez-Martinez M-A, Chan Y, Van Nostrand JD, de los Rios-Murillo A et al (2015a) Diverse metabolic and stress tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 38:433–443. doi: 10.1007/s00300-014-1598-3 CrossRefGoogle Scholar
  60. Wei ST, Higgins CM, Adriaenssens EM, Cowan DA, Pointing SB (2015b) Genetic signatures indicate widespread antibiotic resistance and phage infection in microbial communities of the McMurdo Dry Valleys, East Antarctica. Polar Biol 38:919–925. doi: 10.1007/s00300-015-1649-4 CrossRefGoogle Scholar
  61. Wong FKY, Lacap DC, Lau MCY, Aitchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microb Ecol 60:730–739. doi: 10.1007/s00248-010-9653-2 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2:308–320. doi: 10.1038/ismej.2007.104 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Applied Ecology New Zealand, School of Applied SciencesAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations