Skip to main content

Biological Soil Crusts as an Organizing Principle in Drylands

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

Biological soil crusts (biocrusts) have been present on Earth’s terrestrial surfaces for billions of years. They are a critical part of ecosystem processes in dryland regions, as they cover most of the soil surface and thus mediate almost all inputs and outputs from soils in these areas. There are many intriguing, but understudied, roles these communities may play in drylands. These include their function in nutrient capture and transformation, influence on the movement and distribution of nutrients and water within dryland soils, ability to structure vascular plant communities, role in creating biodiversity hotspots, and the possibility that they can be used as indicators of soil health. There are still many fascinating aspects of these communities that need study, and we hope that this chapter will facilitate such efforts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allington GRH, Valone TJ (2014) Islands of fertility: a by-product of grazing! Ecosystems 17:127–141

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Shaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highlydynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:63–76

    Article  Google Scholar 

  • Belnap J, Prasse R, Harper K (2003) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 281–300

    Google Scholar 

  • Bowker MA, Belnap J (2008) A simple classification of soil types as habitats of biological soil crusts on the Colorado Plateau, USA. J Veg Sci 19:831–840

    Article  Google Scholar 

  • Bowker MA, Belnap J, Rosentreter R et al (2004) Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA. Appl Soil Ecol 26:41–52. doi:10.1016/j.apsoil.2003.10.005

    Article  Google Scholar 

  • Bowling DR, Grote EE, Belnap J (2011) Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. J Geophys Res 116:1–17. doi:10.1029/2011JG001643

    Google Scholar 

  • Collins SL, Belnap J, Grimm NB et al (2014) A multi-scale, hierarchical model of pulse dynamics in aridland ecosystems. Annu Rev Ecol Evol Syst 45:397–419

    Article  Google Scholar 

  • Dahlberg A, Bültmann H, Cripps CL et al (2013) Chapter 10, Fungi. In: Meltofte H (ed) CAAF 2013. Arctic biodiversity assessment. Status and trends in arctic biodiversity. Conserv Arctic Flora Fauna, Akureyri, 674 p

    Google Scholar 

  • Daniëls FJA, Gillespie LJ, Poulin M et al (2013) Chapter 9, Plants. In: Meltofte H (ed) CAAF 2013. Arctic biodiversity assessment, status and trends in arctic biodiversity. Conserv Arctic Flora Fauna, Akureyri, 674 p

    Google Scholar 

  • Day JG, Tsavalos AJ (1996) An investigation of the heterotrophic culture of the green alga Tetraselmis. J Appl Phycol 8:73–77

    Article  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Belnap J (2003) Small-scale environments and distribution of biological soil crusts. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 193–201

    Google Scholar 

  • Golluscio RA, Sala OE, Lauenroth WR (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25

    Article  Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    Article  CAS  Google Scholar 

  • Housman DC, Yeager CM, Darby BJ, Sanford RL Jr, Kuske CR, Neher DA, Belnap J (2007) Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol Biochem 39:2138–2149

    Article  CAS  Google Scholar 

  • Isbell F, Craven D, Connolly J et al (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526(7574):574–577. doi:10.1038/nature15374

    Article  CAS  PubMed  Google Scholar 

  • Khoja TM (1973) Heterotrophic growth of blue-green algae. Doctoral thesis, Durham University. http://etheses.dur.ac.uk/1315/

  • Letrouit-Galinou M, Asta J (1994) Thallus morphogenesis in some lichens. Cryptogam Bot 4:274–282

    Google Scholar 

  • Mattick F (1953) Lichenologische Notizen: 1. Der Flechten-Koeffizient und seine Bedeutung für die Pflanzenbiogeographie.—2. Funde lichenisierter Clavarien in Brasilien.—3. Das Zusammenleben von Trentepohlien mit Flechten.—4. Gedanken zur Phylogenie der Flechten.—5. Zur Nomenklatur der Flechten. Berichte der Deutschen Botanischen Gesellschaft 64(7):263–276

    Google Scholar 

  • Naeem S, Knops JM, Tilman D et al (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108

    Article  Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowld NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195. doi:10.1038/ngeo133

    Article  CAS  Google Scholar 

  • Olson JB, Litaker RW, Paerl HW (1999) Ubiquity of heterotrophic diazotrophs in marine microbial mats. Aquat Microb Ecol 19:29–36

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FM, de-Bashan LE et al (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    Article  CAS  PubMed  Google Scholar 

  • Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci U S A 98:7123–7127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosentreter R (1984) Compositional patterns within a rabbitbrush (Chrysothamnus) community of the Idaho Snake River Plain. In: Proceedings, symposium on the biology of Artemisia and Chrysothamnus. US Department of Agriculture General Technical Report INT-200, pp 273–277

    Google Scholar 

  • Rosentreter R, Eldridge D (2003) Biological soil crust index for monitoring rangeland health. In: Allsopp N, Palmer AR, Milton SJ et al (eds) Proceedings of the VIIth international rangelands congress. Durban, South Africa, pp 767–769. ISBN 0-958-45348-9

    Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    Article  PubMed  Google Scholar 

  • Ueno R, Hanagata N, Urano N, Suzuki M (2005) Molecular phylogeny and phenotypic variation in the heterotrophic green algal genus Prototheca (Trebouxiophyceae, Chlorophyta) 1. J Phycol 41:1268–1280

    Article  CAS  Google Scholar 

  • United States National Research Council (2001) Basic research opportunities in the earth sciences. The National Academies Press, Washington, DC

    Google Scholar 

Download references

Acknowledgments

JB thanks the US Geological Survey’s Ecosystems program for support. BW gratefully acknowledges support by the Max Planck Society (Nobel Laureate Fellowship) and the German Research Foundation (projects WE2393/2-1 and WE2393/2-2). BB acknowledges grants (BU666/11 to 19) by the German Research Foundation (DFG). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne Belnap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland (outside the USA)

About this chapter

Cite this chapter

Belnap, J., Weber, B., Büdel, B. (2016). Biological Soil Crusts as an Organizing Principle in Drylands. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_1

Download citation

Publish with us

Policies and ethics