Skip to main content

Second Generation Bioethanol

  • Chapter
  • First Online:
Green Fuels Technology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Second generation bioethanol, i.e., ethanol from lignocellulosic biomass is envisaged as a renewable source of transport fuel in the next years to complement or replace the first generation and the fossil fuel. At present, the most economic solution seems to be the enzymatic way that produces fermentable sugars from cellulose and hemicellulose. To make this process commercially viable, several improvements are needed to enhance the process. Currently, stocks of biomass are constituted by available agro-industrial residues such as corn stover and straws, wood and wood processing residues and dedicated crops such as miscanthus and other grasses. The biological process for converting the lignocellulose to fuel ethanol requires: a pretreatment to liberate cellulose and hemicellulose from their complex with lignin, a depolymerization of the carbohydrate polymers to produce free sugars, and a fermentation of mixed hexose and pentose sugars to produce ethanol. Pretreatment must be cost effective and must be adapted to the type of biomass. They must not produce high amount of inhibitors such as 5-hydroxymethyl furfural, even if different technique are currently available to detoxify fermentation broths. Saccharification by enzymes and fermentation should be conducted separately (SHF) or simultaneously (SSF). Integration of the process the development of cofermentation of pentoses produced through the pretreatment of the biomass (SSCF). Progress in genetic engineering allows us to consider the development of Consolidated BioProcesses (CBP) in which a single microbial strain is able to ferment polysaccharides to produce ethanol in one step. The economic viability of ethanol recovery from the fermentation mash depends of the overall process, as distillation heat balance is dependant of ethanol concentration. The future of ethanol from biomass is widely dependent on the oil price and on the political will of the different countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Asheh S, Ganat F, Al-Lagtah N (2004) Separation of ethanol–water mixtures using molecular sieves and biobased adsorbents. Chem Eng Res Des 82:855–864

    Article  Google Scholar 

  • Alfani F, Gallifuoco A, Saporosi A et al (2000) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:184–192

    Article  Google Scholar 

  • Almeida JR, Modig T, Petersson A et al (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    Article  Google Scholar 

  • Angelini LG, Ceccarini L, Nassi N et al (2009) Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bioenergy 33:635–643

    Article  Google Scholar 

  • Ballerini D, Desmarquest JP, Pourquié P et al (1994) Ethanol production from lignocellulosics: large scale production and economy. Bioresour Technol 50:17–23

    Article  Google Scholar 

  • Ballesteros I, Oliva JM, Saez F et al (2001) Ethanol production from lignocellulosic byproducts of olive oil extraction. Appl Biochem Biotechnol 91–93:237–252

    Article  Google Scholar 

  • Ballesteros I, Oliva JM, Negro MJ et al (2002) Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochem 38:187–192

    Article  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ et al (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Article  Google Scholar 

  • Belkacemi K, Turcotte G, Savoie P et al (1997) Ethanol production from enzymatic hydrolyzates of cellulosic fines and hemicellulose-rich liquors derived from aqueous/steam fractionation of forages. Ind Eng Chem Res 36:4572–4580

    Article  Google Scholar 

  • Belkacemi K, Turcotte G, Savoie P (2002) Aqueous/steam-fractionated agricultural residues as substrates for ethanol production. Ind Eng Chem Res 41:173–179

    Article  Google Scholar 

  • Bischof R, Fourtis L, Limbeck A et al (2013) Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotech Biofuels 6:127

    Article  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvis T et al (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  Google Scholar 

  • Brodeur G, Yau E, Badal K et al (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzym Res. doi:10.4061/2011/787532

    Google Scholar 

  • Brown RC, Radlein D, Piskorz J (2001) Pretreatment processes to increase pyrolytic yield of levoglucosan from herbaceous feedstocks. In: Bosell JJ (ed) American chemical society symposium series no. 784. American Chemical Society, Washington DC, pp 123–134

    Google Scholar 

  • Cadoche L, López GD (1989) Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Wastes 30(2):153–157

    Article  Google Scholar 

  • Cantarella M, Cantarella L, Gallifuoco A et al (2004) Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Proc Biochem 39:1533–1542

    Article  Google Scholar 

  • Cardona CA, Sanchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457

    Article  Google Scholar 

  • Claassen PAM, Van Lier JB, Contreras AL et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52(6):741–755

    Article  Google Scholar 

  • Comb N, Hatzis A (1996) Development of an epi-fluorescence assay for monitoring yeast viability and pretreatment hydrolysate toxicity in the presence of lignocellulosic solids. Appl Biochem Biotechnol 57(58):649–657

    Article  Google Scholar 

  • Cuzens JC, Miller JR (1997) Acid hydrolysis of bagasse for ethanol production. Renewable Energy 10(2/3):285–290

    Article  Google Scholar 

  • Dale BE, Leong CK, Pham TK et al (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56:111–116

    Article  Google Scholar 

  • De Bari I, Viola E, Barisano D et al (2002) Ethanol production at flask and pilot scale from concentrated slurries of steam-exploded aspen. Ind Eng Chem Res 41:1745–1753

    Article  Google Scholar 

  • Demeke MM, Dietz H, Li Y et al (2013) Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 6:89

    Article  Google Scholar 

  • Diaz de Villegas ME, Villa P, Guerra M et al (1992) Conversion of furfural into furfuryl alcohol by Saccharomyces cerevisiae. Acta Biotechnol 12:351–354

    Article  Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96:2019–2025

    Article  Google Scholar 

  • Feng G, Fan LT, Friedler F (2000) Synthesizing alternative sequences via a P-graph-based approach in azeotropic distillation systems. Waste Manage 20:639–643

    Article  Google Scholar 

  • Fillat A, Colom JF, Vidal T (2010) A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresour Technol 101(11):4104–4110

    Article  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:18–628

    Article  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    Google Scholar 

  • Gauss WF, Suzuki S, Takagi M (1976) Manufacture of alcohol from cellulosic materials using plural ferments. US Patent 3,990,944

    Google Scholar 

  • Gomis V, Font A, Pedraza R et al (2005) Isobaric vapor–liquid and vapor–liquid–liquid equilibrium data for the system water + ethanol + cyclohexane. Fluid Phase Equilib 235:7–10

    Article  Google Scholar 

  • Grigoriev IV, Cullen D, Goodwin SB et al (2011) Fueling the future with fungal genomics. Mycology 2(3):192–209

    Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C et al (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Article  Google Scholar 

  • Hamelinck CN, van Hooijdonk G et al (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410

    Article  Google Scholar 

  • Harris EE, Beglinger E (1946) Madison wood sugar process. Ind Eng Chem 38:896–904

    Article  Google Scholar 

  • He J, Wu A, Chen D et al (2014) Cost-effective lignocellulolytic enzyme production by Trichoderma reesei on a cane molasses medium. Biotechnol Biofuels 7:43

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14(9):2000–2014

    Article  Google Scholar 

  • Holtzapple M, Cognata M, Shu Y et al (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275–287

    Article  Google Scholar 

  • Hong J, Ye X, Zhang Y-H (2007) Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir 23:12535–12540

    Article  Google Scholar 

  • Huang HJ, Ramaswamy S, Tschirner UW et al (2008) A review of separation technologies in current and future biorefineries. Sep Purif Technol 62(1):1–21

    Article  Google Scholar 

  • Ishizawa CI, Davis MF, Schell DF et al (2007) Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J Agric Food Chem 55:2575–2581

    Article  Google Scholar 

  • Jackman EA (1987) Industrial alcohol. In: Bu’lock JD, Christiansen B (eds) Basic biotechnology. Academic, London, pp 309–336

    Google Scholar 

  • Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268

    Article  Google Scholar 

  • Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation of yeasts. Adv Biochem Eng Biotechnol 65:117–161

    Google Scholar 

  • Jones JL, Semrau KT (1984) Wood hydrolysis for ethanol production—previous experience and the economics of selected processes. Biomass 5(2):109–135

    Article  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6(1):16

    Article  Google Scholar 

  • Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    Article  Google Scholar 

  • Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 88:17–25

    Article  Google Scholar 

  • Karunanithy C, Muthukumarappan K (2009) Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl Biochem Biotechnol 162(1):264–279

    Article  Google Scholar 

  • Katzen R, Tsao GT (2000) A view of the history of biochemical engineering. In: Scheper T (ed) History of modern biotechnology II. Springer, Berlin

    Google Scholar 

  • Kaylen ML, Van Dyne D, Choi YS et al (2000) Economic feasibility of producing ethanol from lignocellulosic feedstocks. Bioresour Technol 72:19–32

    Article  Google Scholar 

  • Keller FA (1996) Integrated bioprocess development for bioethanol production. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Bristol, pp 351–379

    Google Scholar 

  • Kerstetter JD, Lyons JK (2001) Logging and agricultural residue supply curves for the Pacific Northwest. Washington State University Energy Program. US Department of Energy. Contract #DE-FC01-99EE50616

    Google Scholar 

  • Khiyami MA, Pometto AL III, Brown RC (2005) Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. J Agric Food Chem 53:2978–2987

    Article  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Koppram R, Olsson L (2014) Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnol Biofuels 7:54

    Article  Google Scholar 

  • Kumar A, Cameron JB, Flynn PC (2005) Pipeline transport and simultaneous saccharification of corn stover. Bioresour Technol 96(7):819–829

    Article  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant N-O et al (1999) Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl Biochem Biotechnol 77:91–103

    Article  Google Scholar 

  • Laser M, Schulman D, Allen SG (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  Google Scholar 

  • Lee CK, Low KS, Gan PY (1999) Removal of some organic dyes by acid-treated spent bleaching earth. Environ Technol 20(1):99–104

    Article  Google Scholar 

  • Li L, Wang Y, Zhang Q et al (2008) Wheat straw burning and its associated impacts on Beijing air quality. Sci China Ser D Earth Sci 51:403–414

    Article  Google Scholar 

  • Li C, Tanjore D, He W (2013) Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnol Biofuels 6:154

    Article  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  Google Scholar 

  • Littlewood J, Guo M, Boerjan W et al (2014) Bioethanol from poplar: a commercially viable alternative to fossil fuel in the European Union. Biotechnol Biofuels 7:113

    Article  Google Scholar 

  • Liu C, van der Heide E, Wang H et al (2013) Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels 6:97

    Article  Google Scholar 

  • Liu ZH, Qin L, Zhu JQ et al (2014) Simultaneous saccharification and fermentation of steam-exploded corn stover at high glucan loading and high temperature. Biotechnol Biofuels 7:167

    Article  Google Scholar 

  • Lynd R, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE et al (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  Google Scholar 

  • Maiorella BL (1985) Ethanol. Comprehensive biotechnology, vol 3. Pergamon, Oxford, pp 861–909

    Google Scholar 

  • Margeot A, Hahn-Hagerdal B, Edlund M et al (2009) New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20:372–380

    Article  Google Scholar 

  • Martinez A, Rodriguez ME, York SW et al (2000) Effects of Ca(OH)2 treatments (“Overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69(5):526–536

    Article  Google Scholar 

  • Meirelles A, Weiss S, Herfurth H (1992) Ethanol dehydration by extractive distillation. J Chem Technol Biotechnol 53:181–188

    Article  Google Scholar 

  • Millett MA, Effland MJ, Caulfield DF (1979) Influence of fine grinding on the hydrolysis of cellulosic materials-acid vs. enzymatic. Adv Chem Ser 181:71–89

    Article  Google Scholar 

  • Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  Google Scholar 

  • Nakamura Y, Sawada T, Inoue E (2001) Enhanced ethanol production from enzymatically treated steam-exploded rice straw using extractive fermentation. J Chem Technol Biotechnol 76:879–884

    Article  Google Scholar 

  • Negro MJ, Manzanares P, Ballesteros I et al (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl Biochem Biotechnol 105–108:87–100

    Article  Google Scholar 

  • Neves MA, Kimura T, Shimizu N et al (2007) State of the art and future trends of bioethanol production. Dyn Biochem Process Biotechnol Mol Biol 1–13 (Global Science Books)

    Google Scholar 

  • Nigham PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Google Scholar 

  • Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Article  Google Scholar 

  • Ooshima H, Burns DS, Converse AO (1990) Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol Bioeng 36(5):446–452

    Article  Google Scholar 

  • Pakarinen A, Haven MO, Djajadi DT (2014) Cellulases without carbohydrate-binding modules in high consistency ethanol production process. Biotechnol Biofuels 7:27

    Article  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  Google Scholar 

  • Pan X, Arato C, Gilkes N et al (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  Google Scholar 

  • Prior BA, Kilian SG, du Preez JC (1989) Fermentation of d-xylose by the yeasts Candida Shehatae and Pichia Stipitis. Process Biochem 24:21–32

    Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF et al (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzym Microb Technol 27(3):240–247

    Article  Google Scholar 

  • Reese ET (1976) History of cellulase program at Natick. Biotechnol Bioeng Symp 6:9–30

    Google Scholar 

  • Rezzoug S-A, Capart R (1996) Solvolysis and hydrotreatment of wood to provide fuel. Biomass Bioenergy 11(4):343–352

    Article  Google Scholar 

  • Roberto IC, Lacis LS, Barbosa MFS et al (1991) Utilization of sugar cane bagasse hemicellulosic hydrolysate by Pichia stipitis for the production of ethanol. Process Biochem 26(1):15–21

    Article  Google Scholar 

  • Rodrıguez-Chong A, Ramırez JA, Garrote G et al (2004) Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J Food Eng 61(2):143–152

    Article  Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N et al (2010) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  Google Scholar 

  • Rosillo-Calle F, Cortez L (1998) Towards proalcohol II: a review of the Brazilian bioethanol programme. Biomass Bioenergy 14:115–124

    Article  Google Scholar 

  • Saha BC, Iten LB, Cotta MA et al (2005a) Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol Prog 21:816–822

    Article  Google Scholar 

  • Saha BC, Iten LB, Cott MA et al (2005b) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700

    Article  Google Scholar 

  • Sakamoto T, Hasunuma T, Hori Y et al (2011) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158:203–210

    Article  Google Scholar 

  • Salvachúa D, Prieto A, Lopez-Abelairas M et al (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  Google Scholar 

  • Sanda T, Hasunuma T, Matsuda F (2011) Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Bioresour Technol 102:7917–7924

    Article  Google Scholar 

  • Sannigrahi P, Ragauskas AJ (2009) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4:209–226

    Article  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S et al (2012) Bioethanol production from agricultural wastes: an overview. Renewable Energy 37(1):19–27

    Article  Google Scholar 

  • Sasaki K, Tsuge Y, Sasaki D et al (2014) Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 169:380–386

    Article  Google Scholar 

  • Sasaki K, Tsuge Y, Sasaki D et al (2015) Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 185:263–268

    Article  Google Scholar 

  • Schell DJ, Farmer J, Newman M et al (2003) Dilute sulfuric acid pre-treatment of corn stover in pilot-scale reactor. Investigation of yields, kinetics, and enzymatic digestibilities of solids. Appl Biochem Biotechnol 105(1–3):69–85

    Article  Google Scholar 

  • Sendich EN, Laser M, Kim S et al (2008) Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–8435

    Article  Google Scholar 

  • Shaw AJ, Jenney FE, Adams MW et al (2008) End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzym Microb Technol 42(6):453–458

    Article  Google Scholar 

  • Soderstrom J, Pilcher L, Galbe M et al (2003) Combined use of H2SO4 and SO2 impregnation for steam pretreatment of spruce in ethanol production. Appl Biochem Biotechnol 105:127–140

    Article  Google Scholar 

  • Sreenath HK, Koegel RG, Moldes AB et al (2001) Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochem 36:1199–1204

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  MathSciNet  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  Google Scholar 

  • Tampier M, Smith DW, Bibeau EL et al (2004) Identifying environmentally preferable uses for biomass resources: phase 2 report: life-cycle emission reduction benefits of selected feedstock-to product threads. Envirochem Inc., Vancouver

    Google Scholar 

  • Teixeira LC, Linden JC, Schroeder HA (1999) Alkaline and peracetic acid pretreatments of biomass for ethanol production. Appl Biochem Biotechnol 77–79:19–34

    Article  Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  Google Scholar 

  • Teymouri F, Laureano-Perez L, Alizadeh H et al (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):2014–2018

    Article  Google Scholar 

  • Tomas-Pejo E, Oliva JM, Ballesteros M et al (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100(6):1122–1131

    Article  Google Scholar 

  • Uppugundia N, da Costa Sousa L, Chundawat S et al (2014) A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol Biofuels 7:72

    Article  Google Scholar 

  • Van Zyl C, Prior BA, du Preez JC (1988) Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Appl Biochem Biotechnol 17:357–369

    Article  Google Scholar 

  • Varga E, Klinkle HB, Reczey K et al (2004) High solid simultaneous saccharification and fermentation of wet oxidized cornstover to ethanol. Biotechnol Bioeng 88(5):567–574

    Article  Google Scholar 

  • Wana C, Zhou Y, Li Y (2011) Liquid hot water and alkaline pretreatment of soybean straw for improving cellulose digestibility. Bioresour Technol 102:6254–6259

    Google Scholar 

  • Wasylkiewicz SK, Kobylka LC, Castillo FJL (2003) Synthesis and design of heterogeneous separation systems with recycle streams. Chem Eng J 92:201–208

    Article  Google Scholar 

  • Wooley R, Ruth M, Glassner D, Sheejan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803

    Article  Google Scholar 

  • Wu Z, Lee YY (1997) Inhibition of the enzymatic hydrolysis of cellulose by ethanol. Biotechnol Lett 19(10):977–979

    Article  MathSciNet  Google Scholar 

  • Wyman CE (1996) Ethanol production from lignocellulosic biomass: overview. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Bristol, pp 1–18

    Google Scholar 

  • Wyman CE, Spindler DD, Grohmann K (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy 3(5):301–307

    Article  Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371

    Article  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  Google Scholar 

  • Yu ZS, Zhang HX (2004) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 93:199–204

    Article  Google Scholar 

  • Yu G, Yano S, Inoue H et al (2010) Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl Biochem Biotechnol 160(2):539–551

    Article  Google Scholar 

  • Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulose systems. Biotechnol Bioeng 8(7):797–824

    Article  Google Scholar 

  • Zhang S, Wolfgang DE, Wilson DB (1999) Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol Bioeng 66(1):35–41

    Article  Google Scholar 

  • Zhang MJ, Wang F, Su R et al (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101:4959–4964

    Article  Google Scholar 

  • Zhou S, Raouche S, Grisel S et al (2015) Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. Microb Biotechnol 8(6):940–949

    Article  Google Scholar 

  • Zhu Z, Sathitsuksanoh N, Vinzant T et al (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103(4):715–724

    Article  Google Scholar 

  • Zhuang XY, Zhang HX, Yang JZ et al (2001) Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour Technol 79:63–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Faulds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sigoillot, JC., Faulds, C. (2016). Second Generation Bioethanol. In: Soccol, C., Brar, S., Faulds, C., Ramos, L. (eds) Green Fuels Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30205-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30205-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30203-4

  • Online ISBN: 978-3-319-30205-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics