Skip to main content

Biohydrogen

  • Chapter
  • First Online:
Green Fuels Technology

Abstract

By virtue of its environmental friendly emissions, hydrogen has been considered as a potential green alternative of fossil fuels. Additionally, the gravimetric energy density of hydrogen is nearly three times higher than transportation fuels such as gasoline and diesel. Therefore, if hydrogen can be produced at commercial scale from renewable materials by using sustainable technologies, it will have enormous environmental benefits. In this context, research work has been focused on biohydrogen production from biomass, most preferably from the agro-industrial waste based feedstock. Nearly for the last three decades, investigators have been actively studying biohydrogen production from different renewable sources, and the trend of such investigations has been gradually changing from fundamental studies to technology development. Thus, in the present chapter, the development in biohydrogen research has been presented in a chronological order. The problems associated with different biohydrogen production methods and their potential solutions have been discussed. Finally, different recent government initiatives to promote a hydrogen-based economy have also been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Morsy FM, El-Enany A-WE (2011) Hydrogen production from rotten dates by sequential three stages fermentation. Int J Hydrogen Energy 36(21):13518–13527

    Article  Google Scholar 

  • Bagai R, Madamwar D (1999) Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of Phormidium valderianum, Halobacterium halobium, and Escherichia coli immobilized in polyvinyl alcohol. Int J Hydrogen Energy 24(4):311–317

    Article  Google Scholar 

  • Bauchop T, Mountfort DO (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl Environ Microbiol 42(6):1103–1110

    Google Scholar 

  • Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117

    Article  Google Scholar 

  • Chae K-J, Kim K-Y, Choi M-J, Yang E, Kim IS, Ren X, Lee M (2014) Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells. Chem Eng J 254:393–398

    Article  Google Scholar 

  • Chen X, Sun Y, Xiu Z, Li X, Zhang D (2006) Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int J Hydrogen Energy 31(4):539–549

    Article  Google Scholar 

  • Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 37(1):1120–1124

    Article  Google Scholar 

  • Dictor M-C, Joulian C, Touzé S, Ignatiadis I, Guyonnet D (2010) Electro-stimulated biological production of hydrogen from municipal solid waste. Int J Hydrogen Energy 35(19):10682–10692

    Article  Google Scholar 

  • Elbeshbishy E, Hafez H, Nakhla G (2011) Hydrogen production using sono-biohydrogenator. Int J Hydrogen Energy 36(2):1456–1465

    Article  Google Scholar 

  • Escamilla-Alvarado C, Ponce-Noyola T, Ríos-Leal E, Poggi-Varaldo HM (2013) A multivariable evaluation of biohydrogen production by solid substrate fermentation of organic municipal wastes in semi-continuous and batch operation. Int J Hydrogen Energy 38(28):12527–12538

    Article  Google Scholar 

  • Fang HH, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82(1):87–93

    Article  MathSciNet  Google Scholar 

  • Fontes Lima DM, Zaiat M (2012) The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor. Int J Hydrogen Energy 37(12):9630–9635

    Article  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240

    Article  Google Scholar 

  • Garcia-Lopez P, Kung L, Odom J (1996) In vitro inhibition of microbial methane production by 9, 10-anthraquinone. J Anim Sci 74(9):2276–2284

    Article  Google Scholar 

  • Gillingham K (2007) Hydrogen internal combustion engine vehicles: a prudent intermediate step or a step in the wrong direction? (Stanford)

    Google Scholar 

  • Goodwin S, Conrad R, Zeikus J (1988) Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems. Appl Environ Microbiol 54(2):590–593

    Google Scholar 

  • Guo W-Q, Ren N-Q, Wang X-J, Xiang W-S, Meng Z-H, Ding J, Qu Y-Y, Zhang L-S (2008) Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor. Int J Hydrogen Energy 33(19):4981–4988

    Article  Google Scholar 

  • Gurunathan K (2000) Photobiocatalytic production of hydrogen using sensitized TiO2–MV2+ system coupled Rhodopseudomonas capsulata. J Mol Catal A: Chem 156(1):59–67

    Article  Google Scholar 

  • Guwy A, Hawkes F, Hawkes D, Rozzi A (1997) Hydrogen production in a high rate fluidised bed anaerobic digester. Water Res 31(6):1291–1298

    Article  Google Scholar 

  • Hafez H, Nakhla G, El Naggar MH, Elbeshbishy E, Baghchehsaraee B (2010) Effect of organic loading on a novel hydrogen bioreactor. Int J Hydrogen Energy 35(1):81–92

    Article  Google Scholar 

  • Hall D, Rao K, Reeves S, Gogotov I (1978) Biocatalytic production of hydrogen by an in vitro system. Altern Energy Sour 8:3675–3696

    Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  Google Scholar 

  • Harding G, Sutter V, Finegold S, Bricknell K (1976) Characterization of Bacteroides melaninogenicus. J Clin Microbiol 4(4):354–359

    Google Scholar 

  • Hillmer P, Gest H (1977) H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol 129(2):724–731

    Google Scholar 

  • Hou Y, Luo H, Liu G, Zhang R, Li J, Fu S (2014) Improved hydrogen production in the microbial electrolysis cell by inhibiting methanogenesis using ultraviolet irradiation. Environ Sci Technol 48(17):10482–10488

    Article  Google Scholar 

  • Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42(15):4172–4178

    Article  Google Scholar 

  • Huang S-R, Chen H-T, Chung C-H, Wu C-C, Tsai T-Y, Chu C-Y, Lin C-Y (2012) Fermentative hydrogen production using a real-time fuzzy controller. Int J Hydrogen Energy 37(20):15575–15581

    Article  Google Scholar 

  • Ishikawa M, Yamamura S, Takamura Y, Sode K, Tamiya E, Tomiyama M (2006) Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system. Int J Hydrogen Energy 31(11):1484–1489

    Article  Google Scholar 

  • Ishikawa M, Yamamura S, Ikeda R, Takamura Y, Sode K, Tamiya E, Tomiyama M (2008) Development of a compact stacked flatbed reactor with immobilized high-density bacteria for hydrogen production. Int J Hydrogen Energy 33(5):1593–1597

    Article  Google Scholar 

  • Jeong D-Y, Cho S-K, Shin H-S, Jung K-W (2013) Application of an electric field for pretreatment of a seeding source for dark fermentative hydrogen production. Bioresour Technol 139:393–396

    Article  Google Scholar 

  • Joyner A, Winter W, Godbout D (1977) Studies on some characteristics of hydrogen production by cell-free extracts of rumen anaerobic bacteria. Can J Microbiol 23(3):346–353

    Article  Google Scholar 

  • Junghare M, Subudhi S, Lal B (2012) Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. Int J Hydrogen Energy 37(4):3160–3168

    Article  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microbial Technol 38(5):569–582

    Article  Google Scholar 

  • Karube I, Suzuki S, Matsunaga T, Kuriyama S (1981) Biochemical energy conversion by immobilized whole cells. Ann N Y Acad Sci 369(1):91–98

    Article  Google Scholar 

  • Karube I, Urano N, Matsunaga T, Suzuki S (1982) Hydrogen production from glucose by immobilized growing cells of Clostridium butyricum. Eur J Appl Microbiol Biotechnol 16(1):5–9

    Article  Google Scholar 

  • Keskin T, Hallenbeck PC (2012) Hydrogen production from sugar industry wastes using single-stage photofermentation. Bioresour Technol 112:131–136

    Article  Google Scholar 

  • Khanal SK, Chen W-H, Li L, Sung S (2004) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 29(11):1123–1131

    Google Scholar 

  • Kim S-H, Han S-K, Shin H-S (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrogen Energy 29(15):1607–1616

    Article  Google Scholar 

  • Kim D-H, Han S-K, Kim S-H, Shin H-S (2006) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrogen Energy 31(15):2158–2169

    Article  Google Scholar 

  • Kim YM, Cho HS, Jung GY, Park JM (2011) Engineering the pentose phosphate pathway to improve hydrogen yield in recombinant Escherichia coli. Biotechnol Bioeng 108(12):2941–2946

    Article  Google Scholar 

  • Kotay SM, Das D (2006) Feasibility of biohydrogen production from sewage sludge using defined microbial consortium. In: Proceedings of the 16th world hydrogen energy conference. Lyon, France, pp 209–210

    Google Scholar 

  • Koutrouli EC, Gavala HN, Skiadas IV, Lyberatos G (2006) Mesophilic biohydrogen production from olive pulp. Process Saf Environ Prot 84(4):285–289

    Article  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35(6):589–593

    Article  Google Scholar 

  • Kumazawa S (1981) Hydrogen metabolism by a marine blue-green alga, Oscillatoria Sp Miami Bg 7

    Google Scholar 

  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrogen Energy 34(15):6201–6210

    Article  Google Scholar 

  • Lay J-J, Lee Y-J, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33(11):2579–2586

    Article  Google Scholar 

  • Lin C-Y, Chen H-P (2006) Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. Int J Hydrogen Energy 31(7):953–960

    Article  Google Scholar 

  • Lin C, Lay C (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy 29(1):41–45

    Article  Google Scholar 

  • Lo YC, Huang C-Y, Fu T-N, Chen C-Y, Chang J-S (2009) Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate. Int J Hydrogen Energy 34(15):6189–6200

    Article  Google Scholar 

  • Mamimin C, Prasertsan P (2011) Effect of temperature and initial pH on biohydrogen production from palm oil mill effluent: long-term evaluation and microbial community analysis. Electron J Biotechnol 14(5):9-9

    Google Scholar 

  • Miller TL, Wolin M (1973) Formation of hydrogen and formate by Ruminococcus albus. J Bacteriol 116(2):836–846

    Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73(1):59–65

    Article  Google Scholar 

  • Modigell M, Holle N (1998) Reactor development for a biosolar hydrogen production process. Renewable Energy 14(1):421–426

    Article  Google Scholar 

  • Mohanraj S, Kodhaiyolii S, Rengasamy M, Pugalenthi V (2014) Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: evaluation and comparison of the effects. Int J Hydrogen Energy 39:11920–11929

    Article  Google Scholar 

  • Mountfort DO, Kaspar HF (1986) Palladium-mediated hydrogenation of unsaturated hydrocarbons with hydrogen gas released during anaerobic cellulose degradation. Appl Environ Microbiol 52(4):744–750

    Google Scholar 

  • Najafpour G, Younesi H, Mohamed AR (2004) Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum, in batch culture. Biochem Eng J 21(2):123–130

    Article  Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24(1):61–84

    Article  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valorization 1(1):21–39

    Article  Google Scholar 

  • Odom JM, Wall JD (1983) Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Appl Environ Microbiol 45(4):1300–1305

    Google Scholar 

  • Peixoto G, Saavedra NK, Varesche MBA, Zaiat M (2011) Hydrogen production from soft-drink wastewater in an upflow anaerobic packed-bed reactor. Int J Hydrogen Energy 36(15):8953–8966

    Article  Google Scholar 

  • Sabourin-Provost G, Hallenbeck PC (2009) High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour Technol 100(14):3513–3517

    Article  Google Scholar 

  • Sahota SS, Bramley PM, Menzies IS (1982) The fermentation of lactulose by colonic bacteria. J Gen Microbiol 128(2):319–325

    Google Scholar 

  • Sarma SJ, Brar SK, Le Bihan Y, Buelna G, Soccol CR (2014a) Mitigation of the inhibitory effect of soap by magnesium salt treatment of crude glycerol–a novel approach for enhanced biohydrogen production from the biodiesel industry waste. Bioresour Technol 151:49–53

    Article  Google Scholar 

  • Sarma SJ, Dhillon GS, Brar SK, Bihan YL, Buelna G (2014b) Key enzymes in value-addition of glycerol to biohydrogen. In: Brar SK, Verma M (eds) Enzymes in value-addition of wastes. Nova Science Publishers, New York, pp 173–192

    Google Scholar 

  • Schultz J, Weaver P (1982) Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata. J Bacteriol 149(1):181–190

    Google Scholar 

  • Şensöz S, Angın D, Yorgun S (2000) Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenergy 19(4):271–279

    Article  Google Scholar 

  • Sittijunda S, Reungsang A (2010) Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation. Int J Hydrogen Energy 35(24):13427–13434

    Article  Google Scholar 

  • Sivagurunathan P, Sen B, Lin C-Y (2014) Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int J Hydrogen Energy 39:19232–19241

    Article  Google Scholar 

  • Song W, Cheng J, Zhao J, Carrieri D, Zhang C, Zhou J, Cen K (2011) Improvement of hydrogen production by over-expression of a hydrogen-promoting protein gene in Enterobacter cloacae. Int J Hydrogen Energy 36(11):6609–6615

    Article  Google Scholar 

  • Sydney EB, Larroche C, Novak AC, Nouaille R, Sarma SJ, Brar SK, Letti LAJ, Soccol VT, Soccol CR (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:380–386

    Article  Google Scholar 

  • Taguchi F, Yamada K, Hasegawa K, Taki-Saito T, Hara K (1996) Continuous hydrogen production by Clostridium sp. strain no. 2 from cellulose hydrolysate in an aqueous two-phase system. J Ferment Bioeng 82(1):80–83

    Article  Google Scholar 

  • Tanisho S, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23(7):559–563

    Article  Google Scholar 

  • Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. Int J Hydrogen Energy 32(2):200–206

    Article  Google Scholar 

  • Tartakovsky B, Manuel M-F, Wang H, Guiot S (2009) High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrogen Energy 34(2):672–677

    Article  Google Scholar 

  • Teplyakov V, Gassanova L, Sostina E, Slepova E, Modigell M, Netrusov A (2002) Lab-scale bioreactor integrated with active membrane system for hydrogen production: experience and prospects. Int J Hydrogen Energy 27(11):1149–1155

    Article  Google Scholar 

  • Van Niel EV, Budde M, De Haas G, Van Der Wal F, Claassen P, Stams A (2002) Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 27(11):1391–1398

    Google Scholar 

  • Vasilyeva L, Miyake M, Khatipov E, Wakayama T, Sekine M, Hara M, Nakada E, Asada Y, Miyake J (1999) Enhanced hydrogen production by a mutant of Rhodobacter sphaeroides having an altered light-harvesting system. J Biosci Bioeng 87(5):619–624

    Article  Google Scholar 

  • Vatsala TM (1992) Hydrogen production from (cane-molasses) stillage by Citrobacter freundii and its use in improving methanogenesis. Int J Hydrogen Energy 17(12):923–927

    Article  Google Scholar 

  • Wang L, Li Y-F (2010) Biohydrogen production and wastewater treatment by anaerobic fermentation with UASB. In: International conference on mechanic automation and control engineering (MACE) 2010 IEEE, pp 1683–1686

    Google Scholar 

  • Wu W-M, Hickey R, Zeikus J (1991) Characterization of metabolic performance of methanogenic granules treating brewery wastewater: role of sulfate-reducing bacteria. Appl Environ Microbiol 57(12):3438–3449

    Google Scholar 

  • Xiao B, Liu J (2009) Biological hydrogen production from sterilized sewage sludge by anaerobic self-fermentation. J Hazard Mater 168(1):163–167

    Article  Google Scholar 

  • Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett 20(2):143–147

    Article  Google Scholar 

  • Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91(1):58–63

    Article  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2006) Enhanced hydrogen production from glucose using ldh-and frd-inactivated Escherichia coli strains. Appl Microbiol Biotechnol 73(1):67–72

    Article  Google Scholar 

  • Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrogen Energy 32(1):17–23

    Article  Google Scholar 

  • Zhang Y, Liu G, Shen J (2005) Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations. Int J Hydrogen Energy 30(8):855–860

    Article  Google Scholar 

  • Zhao B-H, Yue Z-B, Zhao Q-B, Mu Y, Yu H-Q, Harada H, Li Y-Y (2008) Optimization of hydrogen production in a granule-based UASB reactor. Int J Hydrogen Energy 33(10):2454–2461

    Article  Google Scholar 

  • Zürrer H, Bachofen R (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37(5):789–793

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to FRQNT, NSERC and INRS-ETE for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarma, S.J., Pachapur, V.L., Brar, S.K., Verma, M., Soccol, C.R. (2016). Biohydrogen. In: Soccol, C., Brar, S., Faulds, C., Ramos, L. (eds) Green Fuels Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30205-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30205-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30203-4

  • Online ISBN: 978-3-319-30205-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics