Skip to main content

Bioethanol Wastes: Economic Valorization

  • Chapter
  • First Online:
Green Fuels Technology

Abstract

The valorization of solid, liquid, and gaseous wastes from industrial activities is important to achieve positive economic and environmental balances. The ethanol industry is one of the biggest examples of biorefineries around the world, generating enormous amounts of wastes and reusing them within the industry. New technologies to add value to these residues are underdevelopment and will chance the panorama of the sector. This chapter describes technologies to reuse and valorize the solids, liquids, and gaseous wastes generated during the production of ethanol through the fermentation of sugarcane. Special attention is given to the liquid and gaseous wastes, more specifically vinasse and CO2, which can be used in microalgal and cyanobacterial cultures for the production of biomolecules such as lipids (to biodiesel), proteins, and pigments. Technologies to produce biogas and biohydrogen from vinasse are also presented and discussed. Finally, a chemical process that promotes vinasse treatment (COD, BOD, and turbidity reduction) coupled to the mitigation of CO2 are presented. All these technologies promote the valorization of the ethanol industry wastes, bringing economic advantages to the segment and immensurable environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    Article  Google Scholar 

  • Angenent LT, Wrenn BA (2008) Optimizing mixed-culture bioprocesses to convert wastes into biofuels. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, pp 179–194

    Chapter  Google Scholar 

  • Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a Cyanobacterium, Spirulina platensis. J Ferment Bioeng 83:17–20

    Article  Google Scholar 

  • Aquasearch Inc. (1999) Analysis of total astaxanthin in algae meal prepared from Haematococcus pluvialis. Technical report available at http://www.fda.gov/ohrms/dockets/dailys/00/jun00/061900/rpt0065_tab8.pdf. Acessed on 27 Aug 2015

  • Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plan 6:71–80

    Article  Google Scholar 

  • Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manage 33:2752–2761

    Article  Google Scholar 

  • Cifuents AS, González MA, Vargas S, Hoeneisen M, González N (2003) Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol Res 36:343–357

    Google Scholar 

  • CONAB (2015) Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar. – v. 1 – Brasília. http://www.conab.gov.br. Accessed 30 Sept 2015

  • Dalmas Neto CJ, Sydney EB, Assmann R, Coraucci Neto D, Soccol CR (2013) Production of biofuels from algal biomass by fast pyrolysis. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from algae, 1st ed. Elsevier, London, pp 143–153

    Google Scholar 

  • Elia Neto A, Shitanku A, Pio AAB, Conde AJ, Gianetti F, Donzelli JL (2009) Manual de Conservação e Reúso de Água na Agroindústria Sucroenergética. ANA - Agência Nacional de Águas, FIESP - Federação das Indústrias do Estado de São Paulo, UNICA - União da Indústria da Cana-de-açúcar, CTC - Centro de Tecnologia Canavieira, Brasília, p 239

    Google Scholar 

  • EMBRAPA (2015) Empresa Brasileira de Pesquisa Agropecuária (http://www.agencia.cnptia.embrapa.br/gestor/cana-de-acucar/arvore/CONTAG01_131_22122006154842.html). Accessed 28 Sept 2015

  • Ensinas AV, Nebra SA, Lozano MA, Serra L (2006) Analysis of cogeneration systems in sugarcane factories – Alternatives of steam and combined cycle power plants. In: Proceedings of ECOS 2006 Aghia Pelagia, Crete, Greece 12–14 July 2006

    Google Scholar 

  • EPE – Empresa de Pesquisa Energética (2013) BRAZILIAN ENERGY BALANCE 2013|year 2012. (https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2013.pdf). Acessed 15 Sept 2015

  • FIESP – Federation of Industries of São Paulo (2013) Outlook Fiesp 2023: Projeções para o agronegócio brasileiro. São Paulo: FIESP. ISBN 978-85-7201-014-6

    Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–67

    Google Scholar 

  • Galbiati JK, Lavanholi MGDP, Gallo CA (2010) Produção de energia elétrica a partir da queima do bagaço de cana-de-açúcar. Nucleus-Ituverava 7:127–138

    Google Scholar 

  • Hartman L, Lago RCA (1973) Rapid preparation of fatty acids methyl esters. Lab Pract Lond 22:475–476

    Google Scholar 

  • Hassuda S, Rebouças AC, Cunha RCA (1991) Impactos da infiltração da vinhaça de cana no aqüífero Bauru. Bol IG-USP Publ Espec 9:169–171

    Article  Google Scholar 

  • Iritani MA, Ezaki S (2012) As águas subterrâneas do Estado de São Paulo, 3rd ed. Secretaria de Estado do Meio Ambiente – SMA, São Paulo

    Google Scholar 

  • Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicelluloses at varying solids concentration. Ind Eng Chem Res 41:1454–1461

    Article  Google Scholar 

  • Jeffries TW, Timourien H, Ward RL (1978) Hydrogen production by Anabaena cylindrica: effect of varying ammonium and ferric ions, pH and light. Appl Environ Microbiol 35:704–710

    Google Scholar 

  • Li J, Zhu D, Niu J, Shen S, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574

    Article  Google Scholar 

  • Margheri MC, Tredici MR, Allotta G, Vagnoli L (1990) Heterotrophic metabolism and regulation of uptake hydrogenase activity in symbiotic cyanobacteria. In: Polsinelli M, Materassi R, Vincenzini M. Dordrecht (eds) Developments in plant and soil sciences—biological nitrogen fixation. Kluwer Academic Publisher, Boston, pp 481–486

    Google Scholar 

  • Martins R (2009) Energia produzida a partir do bagaço da cana é economicamente viável. Available at: http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=energia-produzida-partir-bagaco-cana-economicamente-viavel&id=010175090810#.VdMQ9_lVhHw. Accessed 23 Sept 2015

  • Michelazzo MB, Braunbeck OA (2008) Análise de seis sistemas de recolhimento do palhiço na colheita mecânica da cana-de-açúcar R Bras Eng Agríc Ambiental 12:546–552

    Google Scholar 

  • Moraes BS, Junqueira TL, Pavanelloa LG, Cavaletta O, Mantelattoa PE, Bonomia A, Zaiat M (2014) Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl Energy 113:825–835

    Article  Google Scholar 

  • IEA—International Energy Agency (2015) Energy technologies perspectives. Available at http://www.iea.org/etp/explore/. Accessed 2 Oct 2015

  • Naguib YM (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154

    Google Scholar 

  • Nandi R, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84

    Article  Google Scholar 

  • NOVACANA (2015) Vantagens da bioeletricidade do bagaço de cana para o Brasil http://www.novacana.com/estudos/vantagens-da-bioeletricidade-do-bagaco-de-cana-para-o-brasil-120913/

  • Oliveira ER (2012) Procedimentos e normas para o acompanhamento de análise da qualidade da cana-de-açúcar. Technical Rapport. ORPLANA – Organization of Sugarcane Growers from the South-Central Region of Brazil

    Google Scholar 

  • Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2010) Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 58:1768–1776

    Article  Google Scholar 

  • Phang SM, Miah MS, Chu WL, Hashim M (2000) Spirulina culture in digested sago starch factory waste water. J Appl Phycol 12:395–400

    Article  Google Scholar 

  • Pinto CP (1999) Tecnologia da Digestão Anaeróbia da Vinhaça e Desenvolvimento Sustentável. Dissertation Universidade Estadual de Campinas

    Google Scholar 

  • Reith JH (2001) Report of the workshop biological hydrogen production, 4 Oct, Utrecht, The Netherlands (In Dutch)

    Google Scholar 

  • Renewable Fuels Association (2015) http://www.ethanolrfa.org/resources/industry/statistics/. Accessed 30 Sept 2015

  • Ripoli MRC, Gamero CA (2007) Palhiço de cana-de-açúcar: Ensaio padronizado de recolhimento por enfardamento cilíndrico. Energ Agric Botucatu 22:75–93

    Google Scholar 

  • Ripoli TC, Molina WF Jr (1991) Cultura canavieira: um desperdício energético. Maquinaria Agrícola 3:2–3

    Google Scholar 

  • Rodrigues A, Santos RF, Avaci AB, Rosa HA, Chaves LI, Gasparin E (2012) Estimativa do potencial de geração de energia elétrica a partir da vinhaça. Acta Iguazu 1:80–93

    Google Scholar 

  • Rodrigues RCLB, Felipe MGA, Sil JBA, Vitolo M (2003) Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process variables. Process Biochem 38:1231–1237

    Article  Google Scholar 

  • Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Bon EPS, Moraes LMP, Araújo JA, Torres FAG (2010) Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresour Technol 101:4820–4825

    Article  Google Scholar 

  • Sydney EB, Sturm W, de Carvalho JC, Soccol VT, Larroche C, Pandey A, Soccol CR (2010) Potential carbono dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    Article  Google Scholar 

  • UNICA (2015) Brazilian Sugarcane Industry Association. http://www.unica.com.br/. Accessed 22 Aug 2015

  • Yang B, Wyman CE (2008) Pre-treatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Bittencourt Sydney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sydney, E.B. et al. (2016). Bioethanol Wastes: Economic Valorization. In: Soccol, C., Brar, S., Faulds, C., Ramos, L. (eds) Green Fuels Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30205-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30205-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30203-4

  • Online ISBN: 978-3-319-30205-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics