Skip to main content

Ultraviolet Scattering Communication Channels

  • Chapter
  • First Online:
Optical Wireless Communications

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Tropospheric molecular and particle scattering in ultraviolet (UV) scattering wavelengths enable non-line-of-sight (NLOS) communication which brings robustness to blockage or shadowing. NLOS communication is particularly desirable to relax or eliminate pointing, acquisition and tracking requirements. NLOS-UV links can be used as an alternative to outdoor infrared or visible light links or in combination with existing optical or radiofrequency wireless links. Analytical, experimental and numerical approaches have been used to determine the NLOS-UV channel impulse response and path loss. These studies demonstrate that UV channel is of multipath nature due to the volumetric scattering due to air molecules, aerosols and hydrometeors. Besides inter-symbol interference and bandwidth limitation resulting from frequency-dispersive nature of NLOS-UV channel, performances may be also degraded by high path losses and turbulence-induced fading as the link range increases. This chapter provides an overview of latest advances in NLOS-UV channel modeling and results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APD:

Avalanche Photodiode

BER:

Bit Error Rate

FOV:

Field-of-View

FEC:

Forward Error Correction

FMC:

Forward MC

IRF:

Impulse Response Function

ISI:

Inter-Symbol Interference

LEDs:

Light-Emitting Diodes

LOS:

Line-of-Sight

MC:

Monte Carlo

MPPM:

Multi-pulse PPM

NLOS:

Non-Line-of-Sight

OOK:

On-Off-Keying

PSD:

Particle Size Distribution

PMTs:

Photomultiplier Tubes

PDFs:

Probability Distribution Functions

PPM:

Pulse-Position Modulation

RTE:

Radiative Transfer Equation

RX:

Receiver

SG:

Scaled Gamma

TX:

Transmitter

UV:

ultraviolet

UVC:

UV Communications

References

  1. Andrews, L., Phillips, R.: Laser beam propagation trough random media, 2nd edn. SPIE Press, Bellingham (2005)

    Google Scholar 

  2. Ahrens, D.: Meteorology today: an introduction to weather, climate and the environment, 9th edn. Brooks/Cole, Belmont (2009)

    Google Scholar 

  3. Bai, X., Mcintosh, D., Liu, H., Campbell, J.C.: Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes. IEEE Photonics Technol. Lett. 19(22), 1822–1824 (2007). doi:10.1109/LPT.2007.906830

    Article  Google Scholar 

  4. Carrozzo, D., Mori, S., Marzano, F.S.: Modeling scintillation effects on free space optical links using radiosounding profile data. In: 3rd International Workshop on Optical Wireless Comm (IWOW), Funchal (Madeira Island, Portugal), pp. 40–44 (2014). doi:10.1109/IWOW.2014.6950773

  5. Chen, G., Xu, Z., Ding, H., Sadler, B.M.: Path loss modeling and performance tradeoff study for short-range non-line-of-sight ultraviolet communications. Opt. Express 17(5), 3929–3940 (2009). doi:10.1364/OE.17.003929

    Article  Google Scholar 

  6. Chen, G., Xu, Z., Sadler, B.M.: Experimental demonstration of ultraviolet pulse broadening in short-range non-line-of-sight communication channels. Opt. Express 18(10), 10500–10509 (2010). doi:10.1364/OE.18.010500

    Article  Google Scholar 

  7. Ding, H., Chen, G., Majumdar, A.K., Xu, Z.: A parametric single scattering channel model for non-line-of-sight ultraviolet communications. Proc. SPIE 7091, 70910M (2008). doi:10.1117/12.805942

    Article  Google Scholar 

  8. Ding, H., Chen, G., Majumdar, A.K., Sadler, B.M., Xu, Z.: Modeling of non-line-of sight ultraviolet scattering channels for communication. IEEE J. Sel. Areas Commun. 27(9), 1535–1544 (2009). doi:10.1109/JSAC.2009.091203

    Article  Google Scholar 

  9. Ding, H., Sadler, B.M., Chen, G., Xu, Z.: Modeling and characterization of ultraviolet scattering communication channels. In: Arnon, et al. (ed.) Advanced Optical Wireless Communication Systems. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  10. Drost, R.J., Moore, T.J., Sadler, B.M.: UV communications channel modeling incorporating multiple scattering interactions. J. Opt. Soc. Am. A 28(4), 686–695 (2011). doi:10.1364/JOSAA.28.000686

    Article  Google Scholar 

  11. Drost, R.J., Sadler, B.M.: Survey of ultraviolet non-line-of-sight communications. Semicond. Sci. Technol. 29, 084006 (2014). doi:10.1088/0268-1242/29/8/084006

    Article  Google Scholar 

  12. Feng, T., Xiong, F., Chen, G., Fang, Z.: Effects of atmosphere visibility on performances of non-line-of-sight ultraviolet communication systems. Optik 119, 612–617 (2008). doi:10.1016/j.ijleo.2007.04.004

    Article  Google Scholar 

  13. Elshimy, M.A., Hranilovic, S.: Impact of finite receiver-aperture size in a non-line-of-sight single-scatter propagation model. J. Opt. Soc. Am. A 28, 2568–2576 (2011). doi:10.1364/JOSAA.28.002568

    Article  Google Scholar 

  14. He, Q., Sadler, B.M., Xu, Z.: Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications. Proc. SPIE 7464, 74640H (2009). doi:10.1117/12.826301

    Article  Google Scholar 

  15. ICNIRP: Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys. 87(2), 171–186 (2004)

    Article  Google Scholar 

  16. International Organization for Standardization (ISO 2007) ISO-21348: Space environment (natural and artificial)—process for determining solar irradiances, New York (NY), USA (2007)

    Google Scholar 

  17. Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, New York (1978)

    Google Scholar 

  18. Joseph, J.H., Wiscombe, W.J., Weinman, J.A.: The delta-Eddington approximation for radiative flux transfer. J. Atmos. Sci. 33(12), 2452–2459 (1976). doi:10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2

    Google Scholar 

  19. Kedar, D.: Multiaccess interference in a non-line-of-sight ultraviolet optical wireless sensor network. Appl. Opt. 46, 5895–5901 (2007). doi:10.1364/AO.46.005895

    Article  Google Scholar 

  20. Koller, L.R.: Ultraviolet radiation, 2nd edn. Wiley (1965)

    Google Scholar 

  21. Lewis, E.E., Miller, W.F.: Computational Methods of Neutron Transport. Wiley, New York (1984)

    Google Scholar 

  22. Liao, L., Chen, G., Sadler, B.M., Li, Z.: GPS synchronized UV communication system performance based on USRP. Proc. SPIE 8874, 887409 (2013). doi:10.1117/12.2024384

    Article  Google Scholar 

  23. Lindner, M.B., Elstein, S., Wallace, J., Lindner, P.: Solar-blind bandpass filters for UV imaging devices. Proc. SPIE 3302, 176–183 (1998). doi:10.1117/12.304582

    Article  Google Scholar 

  24. Luettgen, M.R., Shapiro, J.H., Reilly, D.M.: Non-line-of-sight single-scatter propagation model. J. Opt. Soc. Am. A 8(12), 1964–1972 (1991). doi:10.1364/JOSAA.8.001964

    Article  Google Scholar 

  25. Marzano, F.S., Ferrauto, G.: Generalized Eddington analytical model of azimuthally-dependent radiance simulation in stratified media. Appl. Opt. 44, 6032–6048 (2005). doi:10.1364/AO.44.006032

    Article  Google Scholar 

  26. Marzano, F.S., Scaranari, D., Vulpiani, G.: Supervised fuzzy-logic classification of hydrometeors using C-band dual-polarized radars. IEEE Trans. Geosci. Remote Sens. 45, 3784–3799 (2007). doi:10.1109/TGRS.2007.903399

    Article  Google Scholar 

  27. Mori, S., Marzano, F.S., Mereu, L., Montopoli, M., Tosi Beleffi, G.M., Di Bartolo, S.: Hydrometeor scattering and stochastic modeling for free-space optical channel characterization. In: 2nd International Workshop on Optical Wireless Communication (IWOW), Newcastle (UK), pp. 58–62 (2013). doi:10.1109/IWOW.2013.6777777

  28. Mori, S., Marzano, F.S.: Microphysical characterization of free space optical link due to hydrometeor and fog effects. Appl. Opt. 54, 6608–6840 (2015). doi:10.1364/AO.54.006787

    Article  Google Scholar 

  29. Noshad, M., Brandt-Pearce, M., Wilson, S.G.: NLOS-UV communications using M-ary spectral-amplitude-coding. IEEE Trans. Commun. 61, 1544–1553 (2013). doi:10.1109/TCOMM.2013.020813.120371

    Article  Google Scholar 

  30. Patterson, E.M., Gillespie, J.B.: Simplified ultraviolet and visible wavelength atmospheric propagation model. Appl Opt. 28, 425–429 (1989). doi:10.1364/AO.28.000425

    Article  Google Scholar 

  31. Puschell, J.J., Bayse, R.: High data rate ultraviolet communication systems for the tactical battlefield. Proceedings Tactical Communications Conference, pp. 253–267 (1990). doi:10.1109/TCC.1990.177806

  32. Reilly, D.M., Warde, C.: Temporal characteristics of single-scatter radiation. J. Opt. Soc. Am. 69(3), 464–470 (1979)

    Article  Google Scholar 

  33. Reilly, D.M., Moriarty, D.T., Maynard, J.A.: Unique properties of solar blind ultraviolet communication systems for unattended ground sensor networks. Proc. SPIE 5611, 244–254 (2004). doi:10.1117/12.582002

    Article  Google Scholar 

  34. Ren, K., Abdoulaev, G.S., Bal, G.: Algorithm for solving the equation of radiative transfer in the frequency domain. Opt. Lett. 29, 578–580 (2004). doi:10.1364/OL.29.000578

    Article  Google Scholar 

  35. Shen, S.C., Zhang, Y., Yoo, D., et al.: Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD. IEEE Photonics Technol. Lett. 19(21), 1744–1746 (2007). doi:10.1109/LPT.2007.906052

    Article  Google Scholar 

  36. Shaw, G.A., Siegel, A.M., Model, J., Greisokh, D.: Recent progress in short-range ultraviolet communication. Proc. SPIE 5796, 214–225 (2005). doi:10.1117/12.603196

    Article  Google Scholar 

  37. Sunstein, D.E.: A scatter communications link at ultraviolet frequencies. B.S. thesis, Massachusetts Institute of Technology (1968)

    Google Scholar 

  38. Tam, W.G., Zardecki, A.: Multiple scattering corrections to the Beer-Lambert law. 1. Open detector. Appl Opt. 21, 2405–2412 (1982). doi:10.1364/AO.21.002405

    Article  Google Scholar 

  39. Tomasi, C., Vitale, V., Petkov, B., et al.: Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres. Appl Opt. 44, 3320–3341 (2005). doi:10.1364/AO.44.003320

    Article  Google Scholar 

  40. Wallace, J.W., Hobbs, P.V.: Atmospheric science—an introductory survey, 2nd edn. Elsevier (2006)

    Google Scholar 

  41. Wang, L., Xu, Z., Sadler, B.M.: An approximate closed-form link loss model for non-line-of-sight ultraviolet communication in noncoplanar geometry. Opt. Lett. 36, 1224–1226 (2011). doi:10.1364/OL.36.001224

    Article  Google Scholar 

  42. Wang, P., Xu, Z.: Characteristics of ultraviolet scattering and turbulent channels. Opt. Lett. 38(15), 2773–2775 (2013). doi:10.1364/OL.38.002773

    Article  Google Scholar 

  43. White, H.E.: Communication by non-visible ultraviolet radiation. Report, University of California (1945)

    Google Scholar 

  44. Witt, A.N.: Multiple scattering in reflection nebulae I: a Monte Carlo approach. Astrophys. J. Suppl. Ser. 35, 1–6 (1977)

    Article  Google Scholar 

  45. Xiao, H., Zuo, Y., Wu, J., Guo, H., Lin, J.: Non-line-of-sight ultraviolet single-scatter propagation model. Opt. Express 19(18), 17864–17875 (2011). doi:10.1364/OE.19.017864

    Article  Google Scholar 

  46. Xiao, H., Zuo, Y., Wu, J., Li, Y., Lin, J.: Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium. Opt. Lett. 38, 3366–3369 (2013). doi:10.1364/OL.38.003366

    Article  Google Scholar 

  47. Xu, Z., Ding, H., Sadler, B.M., Chen, G.: Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links. Opt. Lett. 33(16), 1860–1862 (2008). doi:10.1364/OL.33.001860

    Article  Google Scholar 

  48. Xu, Z., Sadler, B.M.: Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag. 46(5), 67–73 (2008). doi:10.1109/MCOM.2008.4511651

    Article  Google Scholar 

  49. Zhang, H., Yin, H., Jia, H., Yang, J., Chang, S.: Study of effects of obstacle on non-line-of-sight ultraviolet communication links. Opt. Express 19, 21216–21226 (2011). doi:10.1364/OE.19.021216

    Article  Google Scholar 

  50. Zhang, H., Yin, H., Jia, H., Yang, J., Chang, S.: The characterization of non-line-of-sight ultraviolet communication in non-common-scattering volume. Opt. Commun. 285, 1771–1776 (2012). doi:10.1016/j.optcom.2011.12.049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Mori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mori, S., Marzano, F.S. (2016). Ultraviolet Scattering Communication Channels. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics