Skip to main content

Diffraction Effects and Optical Beam Shaping in FSO Terminals

  • Chapter
  • First Online:
Optical Wireless Communications

Part of the book series: Signals and Communication Technology ((SCT))

  • 3368 Accesses

Abstract

The first part of the chapter is focused on the wave effects, which occur when the Gaussian beam is being restricted by a circular aperture, e.g., by a lens socket. An elliptically symmetrical Gaussian beam is considered in the analysis to improve the generality and to analyze beams produced by edge-emitting semiconductor lasers. From the Huygens-Fresnel principle, two models of the Fresnel diffraction were derived. These models provided means for defining contrast of the diffraction pattern that can be used to quantitatively assess the influence of the diffraction effects on the optical link performance. The second section is devoted to the study that shows the misalignment analysis for two cases—lateral displacement and angular misalignment of the transmitter and the receiver, respectively. The expression for the misalignment attenuation of the elliptical Gaussian beam in FSO links is derived. It will be also shown, how the elliptical Gaussian beam can be used to improve the system’s resistance to some deteriorating effects, e.g., building sway. The third part of the chapter is focused on the analysis of the optimal optical intensity distribution within a radiated laser beam at a transmitter plane which is propagated through free space. The aim of the chapter is to determine the optimal parameters for a Flattened Gaussian beam at the transmitter plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer, K.D., Grubor, J.: Recent developments in optical wireless communications using infrared and visible light. In: 9th International Conference on Transparent Optical Networks ICTON’07 (2007)

    Google Scholar 

  2. Leitgeb, E., Plank, T., Pezzei, P., Kraus, D., Poliak, J.: Integration of fso in local area networks—combination of optical wireless with wlan and dvb-t for last mile internet connections. In: Proceedings of 2014 19th European Conference on Networks and Optical Communications, pp. 120–125 (2014)

    Google Scholar 

  3. Henniger, H., Wilfert, O.: An introduction to free-space optical communications. Radio Eng. 19(2), 203–212 (2010)

    Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  5. Fresnel, A.: Memoire sur la diffraction de la lumiere. Mem de l’Academie des Sciences, pp. 247–382 (1818)

    Google Scholar 

  6. Komrska, J.: Difrakce svetla (2000)

    Google Scholar 

  7. Gillen, G.D., Guha, S.: Modeling and propagation of near-field diffraction patterns: a more complete approach. Am. J. Phys. 72(9), 1195 (2004)

    Article  Google Scholar 

  8. Hovenac, E.A.: Fresnel diffraction by spherical obstacles. Am. J. Phys. 57(1), 79–84 (1989)

    Article  Google Scholar 

  9. Lucke, R.L.: Rayleigh-Sommerfeld diffraction vs Fresnel-Kirchhoff, Fourier Propagation, and Poisson’s Spot. Technical report, Naval Research Laboratory (2004)

    Google Scholar 

  10. Watson, G.N.: A Treatise On The Theory Of Bessel Functions, 2nd edn. Cambridge University Press, London (1966)

    MATH  Google Scholar 

  11. Sheppard, C.J.R., Hrynevych, M.: Diffraction by a circular aperture: a generalization of fresnel diffraction theory. J. Opt. Soc. Am. A 9(2), 274–281 (1992)

    Article  Google Scholar 

  12. Poliak, J., Komrska, J., Wilfert, O.: Restricted beam analysis for fso links. In: 2012 6th European Conference on Antennas and Propagation (EUCAP), pp. 335–339 (2012)

    Google Scholar 

  13. Barcik, P., Hudcova, L.: Measurement of spatial coherence of light propagating in a turbulent atmosphere. Radioengineering 22(1), 341–345 (2013)

    Google Scholar 

  14. Farid, A.A., Hranilovic, S.: Outage capacity optimization for free/space optical links with pointing errors. J. Lightwave Technol. 25(7), 1702–1710 (2007)

    Article  Google Scholar 

  15. Poliak, J., Pezzei, P., Barcik, P., Leitgeb, E., Hudcova, L., Wilfert, O.: On the derivation of exact analytical FSO link attenuation model. Trans. Emerg. Telecommun. Technol. 25(6), 609–617 (2014)

    Article  Google Scholar 

  16. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  17. Poliak, J., Wilfert, O.: Extended model of restricted beam for FSO links. In: Proceedings SPIE 8517, Laser Communication and Propagation through the Atmosphere and Oceans, vol. 8517, pp. 851711-1–851711-8 (2012)

    Google Scholar 

  18. Gradshteyn, I.S., Ryzhik, I.M.: Table of integrals, series, and products, 7th edn. Elsevier/Academic Press, Amsterdam, translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX)

    Google Scholar 

  19. Lee, I.E., Ghassemlooy, Z., Member, S., Ng, W.P.: Effects of aperture averaging and beam width on gaussian free space optical links in the presence of atmospheric turbulence and pointing error. In: 14th International Conference on Transparent Optical Networks (ICTON), pp. 2–5 (2012)

    Google Scholar 

  20. Kaur, P., Jain, V.K., Kar, S.: Capacity of free space optical links with spatial diversity and aperture averaging. In: 2014 27th Biennial Symposium on Communications (QBSC) vol. 6, issue 3, pp. 14–18 (2014)

    Google Scholar 

  21. Yang, L., Gao, X., Alouini, M.S.: Performance analysis of free-space optical communication systems with multiuser diversity over atmospheric turbulence channels. IEEE Photonics J. 6(2), 1–17 (2014)

    Google Scholar 

  22. Eyyuboglu, H.T., Baykal, Y., Sermutlu, E., Korotkova, O., Cai, Y.: Scintillation index of modied Bessel-Gaussian beams propagating in turbulent media. J. Opt. Soc. Am. A Opt. Image Sci. Vision 26(2), 387–94 (2009)

    Google Scholar 

  23. Eyyuboglu, H.T., Baykal, Y., Sermutlu, E., Cai, Y.: Scintillation advantages of lowest order Bessel-Gaussian beams. Appl. Phys. B Laser. Opt. 92, 229–235 (2008)

    Article  Google Scholar 

  24. Kollarova, V., Medrik, T., Celechovsky, R.: Application of nondiffracting beams to wireless optical communications. In: Proceedings of SPIE (2007)

    Google Scholar 

  25. Eyyuboglu, H.T.: Scintillation behavior of Airy beam. Opt. Laser Technol. 47, 232–236 (2013). doi:10.1016/j.optlastec.2012.08.029

    Article  Google Scholar 

  26. Gu, Y., Gbur, G.: Scintillation of Airy beam arrays in atmospheric turbulence. Opt. Lett. 35(20), 3456–3458 (2010)

    Article  Google Scholar 

  27. Chen, C., Yang, H., Kavehrad, M., Zhou, Z.: Propagation of radial Airy array beams through atmospheric turbulence. Opt. Laser. Eng. 52, 106–114 (2014)

    Article  Google Scholar 

  28. Cai, Y.: Propagation of various flat-topped beams in a turbulent atmosphere. J. Opt. A Pure Appl. Opt. 8(6), 537–545 (2006)

    Article  Google Scholar 

  29. Alavinejad, M., Ghafary, B., Kashani, F.: Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere. Opt. Laser. Eng. 46(1), 1–5 (2008)

    Article  Google Scholar 

  30. Eyyuboglu, H.T., Arpali, C., Baykal, Y.K.: Flat topped beams and their characteristics in turbulent media. Opt. Express 14(10), 4196–4207 (2006)

    Article  Google Scholar 

  31. Dickey, F.M., Holswade, S.C.: Laser Beam Shaping: Theory and Techniques. Optical Science and Engineering, Taylor & Francis, Boca Raton (2002)

    Google Scholar 

  32. Hoffnagle, J.A., Jefferson, C.M.: Design and performance of a refractive optical system that converts a Gaussian to a flattop beam. Appl. Opt. 39(30), 5488–5499 (2000)

    Article  Google Scholar 

  33. Hoffnagle, J.A.: Refractive Optical System that Converts a Laser Beam to a Collimated Flat-Top Beam (2001)

    Google Scholar 

  34. Feng, Z., Huang, L., Jin, G.: Beam shaping system design using double freeform optical surfaces. Opt. Express 21(12), 14,728–14,735 (2013)

    Google Scholar 

  35. Shealy, D.L., Hoffnagle, J.A.: Laser beam shaping profiles and propagation. Appl. Opt. 45(21), 5118–5131 (2006)

    Article  Google Scholar 

  36. Duerr, F., Thienpont, H.: Refractive laser beam shaping by means of a functional differential equation based design approach. Opt. Express 22(7), 10,839–10,846 (2014)

    Google Scholar 

  37. Barcik, P., Leitgeb, E., Hudcova, L.: Optical wireless communication transmitter with a refraction beam shaper. In: 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), pp. 1044–1048 (2014)

    Google Scholar 

  38. Bagini, V., Borghi, R., Gori, F., Pacileo, A.M., Santarsiero, M., Ambrosini, D., Spagnolo, G.S.: Propagation of axially symmetric fattened Gaussian beams. J. Opt. Soc. Am. A 13(7), 1385 (1996)

    Google Scholar 

  39. Cowan, D.C., Recolons, J., Andrews, L.C., Young, C.Y.: Propagation of flattened Gaussian beams in the atmosphere: a comparison of theory with a computer simulation model. In: Young, C.Y., Gilbreath, G.C. (eds.), Proceedings of SPIE, Atmospheric Propagation III, vol. 6215, pp. 62,150B–62,150B-10 (2006)

    Google Scholar 

  40. Schmidt, J.: Numerical Simulation of Optical Wave Propagation With Examples in MATLAB. SPIE Press, Washington (2010)

    Google Scholar 

  41. Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation With Applications. Spie Press Monograph, SPIE Press, Bellingham (2001)

    Google Scholar 

  42. Yarnall, T.M., Michael, S.S., Moores, J.D., Parenti, R.R., Wilcox, Jr., W.E.: Analysis of rapid Cn2 fluctuations observed during a 5-km communication link experiment. In: Proceedings of SPIE, vol. 7324, 73,240B–73,240B-7 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otakar Wilfert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Poliak, J., Barcik, P., Wilfert, O. (2016). Diffraction Effects and Optical Beam Shaping in FSO Terminals. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics