Skip to main content

On the Resilient Network Design of Free-Space Optical Wireless Network for Cellular Backhauling

  • Chapter
  • First Online:
Optical Wireless Communications

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

With the densification of nodes in cellular networks, free-space optics (FSO) connections are becoming an appealing low cost and high rate alternative to copper and fiber backhaul solutions for wireless communication systems. To ensure a reliable cellular backhaul, provisions for redundant, disjoint paths between the nodes must be made in the design phase. This chapter aims at finding a cost-effective solution to upgrade the cellular backhaul with pre-deployed optical fibers using FSO links and mirror components. A novel integer linear programming model to approach optimal FSO backhaul design, guaranteeing K-disjoint paths connecting each node pair is presented. Next, a column generation method to a path-oriented mathematical formulation is developed. Applying the method in a sequential manner enables high computational scalability. Realistic scenarios are used to demonstrate the proposed approaches which efficiently provide optimal or near-optimal solutions, and thereby allow accurate dealing with the trade-off between cost and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with MATLAB. CRC Press (2012)

    Google Scholar 

  2. Chan, V.: Free-space optical communications. IEEE/OSA J. Lightwave Technol. 24(12), 4750–4762 (2006)

    Article  Google Scholar 

  3. Qureshi, R.: Ericsson mobility report. http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-june-2014.pdf (2014). Accessed 15 Jan 2015

  4. Tipmongkolsilp, O., Zaghloul, S., Jukan, A.: The evolution of cellular backhaul technologies: current issues and future trends. IEEE Commun. Surv. Tutorials 13(1), 97–113 (2011)

    Article  Google Scholar 

  5. Frey, T.: The effects of the atmosphere and weather on the performance of a mm-wave communication link. Appl. Microwave Wirel. 76–80 (1999)

    Google Scholar 

  6. Demers, F., Yanikomeroglu, H., St-Hilaire, M.: A survey of opportunities for free space optics in next generation cellular networks. In: The 9th annual communication networks and services research conference (CNSR), pp. 210–216 (2011)

    Google Scholar 

  7. Xu, Z., Sadler, B.: Ultraviolet communications: potential and state-of-the-art. IEEE Commun. Mag. 46(5), 67–73 (2008)

    Article  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. Am. Math. Soc. (1980)

    Google Scholar 

  9. Khalighi, M., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutorials 16(4), 2231–2258 (2014)

    Article  Google Scholar 

  10. Llorca, J., Desai, A., Milner, S.: Obscuration minimization in dynamic free space optical networks through topology control. In: IEEE MILCOM, pp. 1247–1253 (2004)

    Google Scholar 

  11. Zhuang, J., Casey, M., Milner, S., Gabriel, S., Baecher, G.: Multi-objective optimization techniques in topology control of free space optical networks. In: IEEE MILCOM, pp. 430–435 (2004)

    Google Scholar 

  12. Cao, X.: An integer linear programming approach for topology design in OWC networks. In: IEEE GLOBECOM Workshops, pp. 1–5 (2008)

    Google Scholar 

  13. Kashyap, A., Lee, K., Kalantari, M., Khuller, S., Shayman, M.: Integrated topology control and routing in wireless optical mesh networks. Comput. Netw. 51(15), 4237–4251 (2007)

    Article  Google Scholar 

  14. Son, I., Mao, S.: Design and optimization of a tiered wireless access network. In: IEEE INFOCOM, pp. 1–9 (2010)

    Google Scholar 

  15. Zhou, H., Babaei, A., Mao, S., Agrawal, P.: Algebraic connectivity of degree constrained spanning trees for fso networks. In: IEEE ICC, pp. 5991–5996 (2013)

    Google Scholar 

  16. Ouveysi, I., Shu, F., Chen, W., Shen, G., Zukerman, M.: Topology and routing optimization for congestion minimization in optical wireless networks. Opt. Switch. Netw. 7(3), 95–107 (2010)

    Article  Google Scholar 

  17. Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Computer Networks. Morgan Kaufmann (2004)

    Google Scholar 

  18. Wu, Y., Wang, F., Thai, M., Li, Y.: Constructing k-connected m-dominating sets in wireless sensor networks. In: IEEE Military Communications Conference, pp. 1–7 (2007)

    Google Scholar 

  19. Wu, Y., Li, Y.: Construction algorithms for k-connected m-dominating sets in wireless sensor networks. In: ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 83–90 (2008)

    Google Scholar 

  20. Li, D., Cao, J., Liu, M., Zheng, Y.: K-connected target coverage problem in wireless sensor networks. In: Combinatorial Optimization and Applications, Lecture Notes in Computer Science, pp 20–31 (2007)

    Google Scholar 

  21. Younis, M., Senturk, I.F., Akkaya, K., Lee, S., Senel, F.: Topology management techniques for tolerating node failures in wireless sensor networks: a survey. Comput. Netw. 58, 254–283 (2014)

    Article  Google Scholar 

  22. Kerivin, H., Mahjoub, A.: Design of survivable networks: a survey. Networks 46(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khandekar, R., Kortsarz, G., Nutov, Z.: On some network design problems with degree constraints. J. Comput. Syst. Sci. 79(5), 725–736 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bendali, F., Diarrassouba, I., Mahjoub, A., Mailfert, J.: The edge-disjoint 3-hop-constrained paths polytope. Discrete Optimization 7(4), 222–233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zotkiewicz, M., Ben-Ameur, W., Pioro, M.: Finding failure-disjoint paths for path diversity protection in communication networks. IEEE Commun. Lett. 14(8), 776–778 (2010)

    Article  MATH  Google Scholar 

  26. Ho, T.H.: Pointing, acquisition, and tracking systems for free-space optical communication links. Ph.D. thesis, University of Maryland (2007)

    Google Scholar 

  27. Tidwell, T., Gregory, J., Chalfant, C., Orlando, F., Leftwich, M.: Rapid acquisition, pointing and tracking optical system for free space optical communications US Patent 8,160,452 (2012)

    Google Scholar 

  28. Kashani, M.A., Safari, M., Uysal, M.: Optimal relay placement and diversity analysis of relay-assisted free-space optical communication systems. J. Opt. Commun. Netw. 5(1), 37–47 (2013)

    Google Scholar 

  29. The European Commission Momentum project. http://momentum.zib.de (2003). Accessed 20 Nov 2014

  30. Gurobi Optimization Inc. Gurobi optimizer. http://www.gurobi.com (2010). Accessed 10 May 2014

  31. Li, Y., Pappas, N., Angelakis, V., Pioro, M., Yuan, D.: Resilient topology design for free space optical cellular backhaul networking. In: IEEE Globecom Workshops, pp. 487–492 (2014)

    Google Scholar 

  32. Li, Y., Pappas, N., Angelakis, V., Pioro, M., Yuan, D.: Optimization of free space optical wireless network for cellular backhauling. IEEE J. Sel. Areas Commun. 33(9), 1841–1854 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge networking support by the COST Action IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology). M. Pioro was supported by National Science Centre (Poland) under Grant 2015/17/B/ST7/03910. Nikolaos Pappas was supported by the EU Marie Curie Actions project SOrBet (FP7-PEOPLE-2013-IAPP: 612361). This work has been supported in part by the EU Marie Curie Actions project MESH-WISE (FP7-PEOPLE-2012-IAPP: 324515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Pappas, N., Angelakis, V., Pióro, M., Yuan, D. (2016). On the Resilient Network Design of Free-Space Optical Wireless Network for Cellular Backhauling. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics