Skip to main content

Coded Orbital Angular Momentum Modulation and Multiplexing Enabling Ultra-High-Speed Free-Space Optical Transmission

  • Chapter
  • First Online:
Book cover Optical Wireless Communications

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

To simultaneously achieve high throughput and low energy consumption, in this chapter we advocate the use of energy-efficient N-dimensional coded orbital angular momentum (OAM)-based modulation and multiplexing for ultra-high-speed optical transmission over free-space optical (FSO) links. OAM is associated with the azimuthal phase dependence of the complex electric field. Because its eigenvectors are orthogonal, they can be used as basis functions for multidimensional signaling. Because the information capacity is linear in the number of dimensions, we can dramatically improve the overall optical channel capacity through multidimensional signal constellations. On the other hand, energy efficiency can be achieved by properly designing the N-dimensional signal constellation. To deal with time-varying FSO channel conditions, OAM modulation can be combined with rateless coding. Atmospheric turbulence effects can be handled, in addition to FSO-MIMO, through the use of the azimuthal phase correction method, similar to the Gerchberg-Saxton (GS) phase retrieval algorithm. Moreover, distortions introduced by turbulence will be compensated for via adaptive optics approaches. Additionally, LDPC-coded OAM-based free-space optical FSO transmission system is experimentally studied in both the absence and presence of emulator-induced atmospheric turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winzer, P.J.: Modulation and multiplexing in optical communication systems. IEEE LEOS Newslett. 23, 4–10 (2009)

    Google Scholar 

  2. Koizumi, Y., Toyoda, K., Yoshida, M., Nakazawa, M.: 1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km. Opt. Expr. 20, 12508–12514 (2012)

    Article  Google Scholar 

  3. Shieh, W., Djordjevic, I.: OFDM for Optical Communications. Elsevier/Academic Press, Amsterdam-Boston (2010)

    Google Scholar 

  4. Renaudier, J., Charlet, G., Pardo, O.B., Mardoyan, H., Tran, P., Salsi, M., Bigo, S.: Experimental analysis of 100 Gb/s coherent PDM-QPSK long-haul transmission under constraints of typical terrestrial networks. In: Proceedings of ECOC 2008, Brussels, Belgium, paper Th.2.A.3 (2008)

    Google Scholar 

  5. Sakaguchi, J., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T., Hayashi, T., Taru, T., Kobayashi, T., Watanabe, M.: Space division multiplexed transmission of 109-Tb/s data signals using homogeneous seven-core fiber. J. Lightw. Technol. 30, 658–665 (2012)

    Article  Google Scholar 

  6. Sakaguchi, J., Puttnam, B.J., Klaus, W., Awaji, Y., Wada, N., Kanno, A., Kawanishi, T., Imamura, K., Inaba, H., Mukasa, K., Sugizaki, R., Kobayashi, T., Watanabe, M.: 19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305 Tb/s. In: Proceedings of NFOC, OSA Technical Digest (OSA, 2012), paper PDP5C.1 (2012)

    Google Scholar 

  7. Essiambre, R., Ryf, R., Fontaine, N., Randel, S.: Breakthroughs in photonics 2012: Space-division multiplexing in multimode and multicore fibers for high-capacity optical communication. IEEE Photon. J. 5(0701307) (2013)

    Google Scholar 

  8. Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Essiambre, R., Winzer, P., Peckham, D.W., McCurdy, A., Lingle. R.: Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing. In Proceedings of OFC, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10 (2011)

    Google Scholar 

  9. Van Uden, R.G.H., Correa, R.A., Lopez, E.A., Huijskens, F.M., Xia, C., Li, G., Schulzgen, A., de Waardt, H., Koonen, A.M.J., Okonkwo, C.M.: Ultra-high density spatial division multiplexing with a few-mode multi-core fiber. Nat. Photon. 8, 865–870 (2014)

    Article  Google Scholar 

  10. Matsuo, S., Sasaki, Y., Ishida, I., Takenaga, K., Saitoh, K., Koshiba, M.: Recent progress on multi-core fiber and few-mode fiber. In: Proceedings of OFC 2013, Paper OM3I.3 (2013)

    Google Scholar 

  11. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular-momentum of light and the transformation of Laguerre—Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  Google Scholar 

  12. Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A.E., Ramachandran, S.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    Article  Google Scholar 

  13. Golowich, G., Kristensen, P., Bozinovic, N., Gregg, P., Ramachandran, S.: Fibers supporting orbital angular momentum states for information capacity scaling. In: Proceedings of Frontiers in Optics 2012/Laser Science XXVIII, OSA Technical Digest (online) (Optical Society of America, 2012), paper FW2D.2 (2012)

    Google Scholar 

  14. Bozinovic, N., Golowich, S., Kristensen, P., Ramachandran, S.: Control of orbital angular momentum of light with optical fibers. Opt. Lett. 37, 2451–2453 (2012)

    Article  Google Scholar 

  15. Gibson, G., Courtial, J., Padgett, M., Vasnetsov, M., Pas’ko, V., Barnett, S., Franke-Arnold, S.: Free-space information transfer using light beams carrying orbital angular momentum. Opt. Expr. 12, 5448–5456 (2004)

    Article  Google Scholar 

  16. Wang, J., Yang, J.-Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., Willner, A.E.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012)

    Google Scholar 

  17. Djordjevic, I.B., Anguita, J., Vasic, B.: Error-correction coded orbital-angular-momentum modulation for FSO channels affected by turbulence. J. Lightw. Technol. 30(17), 2846–2852 (2012)

    Article  Google Scholar 

  18. Anguita, J.A., Herreros, J., Djordjevic, I.B.: Coherent multi-mode OAM superpositions for multi-dimensional modulation. IEEE Photon. J. 6(2), Paper 7900811 (2014)

    Google Scholar 

  19. Djordjevic, I.B.: Heterogeneous transparent optical networking based on coded OAM modulation. IEEE Photon. J. 3(3), 531–537 (2011)

    Article  Google Scholar 

  20. Djordjevic, I.B., Arabaci, M.: LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication. Opt. Expr. 18(24), 24722–24728 (2010)

    Article  Google Scholar 

  21. Polynkin, P., Peleg, A., Klein, L., Rhoadarmer, T., Moloney, J.: Optimized multiemitter beams for free-space optical communications through turbulent atmosphere. Opt. Lett. 32(8), 885–887 (2007)

    Article  Google Scholar 

  22. Wang, J., Li, S., Luo, M., Liu, J., Zhu, L., Li, C., Xie, D., Yang, Q., Yu, S., Sun, J., Zhang, X., Shieh, W., Willner, A.E.: N-dimensional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes. In: Proceedings of ECOC 2014, paper Mo.4.5.1 (2014)

    Google Scholar 

  23. Huang, H., Xie, G., Yan, Y., Ahmed, N., Ren, Y., Yue, Y., Rogawski, D., Willner, M.J., Erkmen, B.I., Birnbaum, K.M., Dolinar, S.J., Lavery, M.P.J., Padgett, M.J., Tur, M., Willner, A.E.: 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 39(2), 197–200 (2014)

    Article  Google Scholar 

  24. Ung, B., Vaity, P., Wang, L., Messaddeq, Y., Rusch, L.A., LaRochelle, S.: Few-mode fiber with inverse-parabolic graded-index profile for transmission of OAM-carrying modes. Opt. Expr. 22(15), 18044–18055 (2014)

    Article  Google Scholar 

  25. Soares, W.C., Caetano, D.P., Hickmann, J.M.: Hermite-Bessel beams and the geometrical representation of nondiffracting beams with orbital angular momentum. Opt. Expr. 14(11), 4577–4582 (2006)

    Article  Google Scholar 

  26. López-Mariscal, C., Gutierrez-Vega, J.C., Milne, G., Dholakia, K.: Orbital angular momentum transfer in helical Mathieu beams. Opt. Exp. 14(9), 4182–4187 (2006)

    Article  Google Scholar 

  27. Born, M., Wolf, E.: Principles of Optics, 6th edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  28. Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media. SPIE Optical Engineering Press (1998)

    Google Scholar 

  29. Ren, Y., Xie, G., Huang, H., Bao, C., Yan, Y., Ahmed, N., Lavery, M.P.J., Erkmen, B.I., Dolinar, S., Tur, M., Neifeld, M.A., Padgett, M.J., Boyd, R.W., Shapiro, J.H., Willner, A.E.: Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence. Opt. Lett. 39(10), 2845–2848 (2014)

    Article  Google Scholar 

  30. Huang, H., Cao, Y., Xie, G., Ren, Y., Yan, Y., Bao, C., Ahmed, N., Neifeld, M.A., Dolinar, S.J., Willner, A.E.: Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4 × 4 MIMO equalization. Opt. Lett. 39(15), 4360–4363 (2014)

    Article  Google Scholar 

  31. Djordjevic, I.B., Denic, S., Anguita, J., Vasic, B., Neifeld, M.A.: LDPC-Coded MIMO optical communication over the atmospheric turbulence channel. J. Lightw. Technol. 26(5), 478–487 (2008)

    Article  Google Scholar 

  32. Djordjevic, I.B., Arabaci, M., Minkov, L.: Next generation FEC for high-capacity communication in optical transport networks. J. Lightw. Technol. 27(16), 3518–3530 (2009)

    Article  Google Scholar 

  33. Roggemann, M.C., Welsh, B.M.: Imaging through turbulence. CRC Press, Boca Raton, FL (1996)

    Google Scholar 

  34. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)

    MATH  Google Scholar 

  35. Anguita, J.A., Neifeld, M.A., Vasic, B.: Turbulence-induced channel crosstalk in an orbital angular momentum multiplexed free-space optical link. Appl. Opt. 47(13), 2414–2429 (2008)

    Article  Google Scholar 

  36. Padgett, M.J., Allen, L.: The poynting vector in laguerre-gaussian laser modes. Opt. Commun. 121, 36–40 (1995)

    Article  Google Scholar 

  37. Djordjevic, I.B., Liu, T., Xu, L., Wang, T.: On the multidimensional signal constellation design for few-mode fiber based high-speed optical transmission. IEEE Photon. J. 4(5), 1325–1332 (2012)

    Article  Google Scholar 

  38. Djordjevic, I.B., Jovanovic, A., Peric, Z.H., Wang, T.: Multidimensional optical transport based on optimized vector-quantization-inspired signal constellation design. IEEE Trans. Comm. 62(9), 3262–3273 (2014)

    Article  Google Scholar 

  39. Jesacher, A., Schwaighofer, A., Frhapter, S., Maurer, C., Bernet, S., Ritsch-Marte, M.: Wavefront correction of spatial light modulators using an optical vortex image. Opt. Exp. 15(5), 5801–5808 (2007)

    Article  Google Scholar 

  40. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  41. Chandrasekaran, N., Shapiro, J.H.: Turbulence-induced crosstalk in multiple-spatial-mode optical communication. In: Proceedings of CLEO 2012, San Jose, CA, May 6–11, 2012, Paper CF3I.6 (2012)

    Google Scholar 

  42. Al-Habash, M.A., Andrews, L.C., Phillips, R.L.: Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media. Opt. Eng. 40, 1554–1562 (2001)

    Article  Google Scholar 

  43. Pishro, H., Fekri, F.: Results on punctured LDPC codes. In: Proceedings of IEEE Information Theory Workshop, pp. 215–219 (2004)

    Google Scholar 

  44. MacKay, D.J.C.: Fountain codes. IEE Proc. Comm. 152, 1062–1068 (2005)

    Article  Google Scholar 

  45. Huang, M.-F., Tanaka, A., Ip, E., Huang, Y.-K., Qian, D., Zhang, Y., Zhang, S., Ji, P.N., Djordjevic, I.B., Wang, T., Aono, Y., Murakami, S., Tajima, T., Xia, T.J., Wellbrock, G.A.: Terabit/s Nyquist superchannels in high capacity fiber field trials using DP-16QAM and DP-8QAM modulation formats. J. Lightw. Technol. 32(4), 776–782 (2014)

    Article  Google Scholar 

  46. Zou, D., Djordjevic, I.B.: FPGA implementation of high-performance QC-LDPC decoder for optical communications. In: Proceedings of SPIE Photonics West 2015, OPTO: Optical Metro Networks and Short-Haul Systems VII, Paper 9388-24, 7–12 February 2015, San Francisco, California, United States

    Google Scholar 

  47. BEECube, BEE4 All Programmable Rack Servers. http://www.beecube.com/products/BEE4.asp

  48. Chang, F., Onohara, K., Mizuochi, T.: Forward error correction for 100 G transport networks. IEEE Comm. Mag. 48(3), S48–S55 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank AFOSR and Senseintel for supporting the experimental verification part of the chapter, Jaime Anguita from Universidad de los Andes for his help with experimental setup, Yequn Zhang and Changyu Lin from University of Arizona for their help with coherent detection DSP algorithms used in experiments, and Ding Zou from University of Arizona for his help with FPGA implementation results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan B. Djordjevic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Djordjevic, I.B., Qu, Z. (2016). Coded Orbital Angular Momentum Modulation and Multiplexing Enabling Ultra-High-Speed Free-Space Optical Transmission. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics