Skip to main content

Satellite Downlink Coherent Laser Communications

  • Chapter
  • First Online:
Book cover Optical Wireless Communications

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Free-space coherent laser downlinks can potentially provide high data rates in space-to-Earth communications, and are a key enabler for future optical information systems in space. There is growing interest in the high sensitivity and spectral efficiency of coherent optical receivers for downlink systems, despite a higher cost and complexity than direct-detection receivers. In practice, however, when the link passes through the atmosphere, clear-air turbulence induces serious phase distortions and fading that impair coherent receivers. The impact of turbulence can be mitigated conveniently by using channel matched array receivers, which comprise multiple subapertures. Alternatively, this impact can be mitigated using a single-aperture receiver with adaptive optics to correct wave front distortion. Here we provide a comprehensive, unified analysis of these two fundamental techniques in atmospheric downlink coherent systems. Our results demonstrate how array receivers and adaptive optics are expected to perform in tracking and correcting atmospherically distorted signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, G.: Recent advances in coherent optical communication. Adv. Opt. Photon. 1, 279–307 (2009)

    Google Scholar 

  2. Ip, E., Lau, A.P.T., Barros, D.J.F., Kahn, J.M.: Coherent detection in optical fiber systems. Opt. Express 16, 753–791 (2008)

    Google Scholar 

  3. Li, M., Cvijetic, M.: Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction. Appl. Opt. 54, 1453–1462 (2015)

    Article  Google Scholar 

  4. Niu, M., Song, X., Cheng, J., Holzman, J.F.: Performance analysis of coherent wireless optical communications with atmospheric turbulence. Opt. Express 20, 6515–6520 (2012)

    Article  Google Scholar 

  5. Bayaki, E., Schober, R.: Performance and design of coherent and differential space-time coded FSO systems. J. Lightwave Technol. 30, 1569–1577 (2012)

    Article  Google Scholar 

  6. Zuo, L., Dang, A., Ren, Y., Guo, H.: Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence. Optics Comm. 284, 1491–1495 (2011)

    Article  Google Scholar 

  7. Niu, M., Schlenker, J., Cheng, J., Holzman, J.F., Schober, R.: Coherent wireless optical communications with predetection and postdetection EGC over gamma-gamma atmospheric turbulence channels. J. Opt. Commun. Netw. 3, 860–869 (2011)

    Article  Google Scholar 

  8. Belmonte, A., Kahn, J.M.: Efficiency of complex modulation methods in coherent free-space optical links. Opt. Express 18, 3928–3937 (2010)

    Article  Google Scholar 

  9. Sandalidis, H.G., Tsiftsis, T.A., Karagiannidis, G.K.: Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. J. Lightwave Technol. 27, 4440–4445 (2009)

    Article  Google Scholar 

  10. Belmonte, A., Kahn, J.M.: Performance of synchronous optical receivers using atmospheric compensation techniques. Opt. Express 16, 14151–14162 (2008)

    Article  Google Scholar 

  11. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press (1999)

    Google Scholar 

  12. Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207–211 (1976)

    Article  Google Scholar 

  13. Belmonte, A.: Capacity of coherent laser downlinks. J. Lightwave Technol. 32, 2128–2132 (2014)

    Article  Google Scholar 

  14. Belmonte, A., Kahn, J.M.: Sequential optimization of adaptive arrays in coherent laser communications. J. Lightw. Technol. 31, 1383–1387 (2013)

    Article  Google Scholar 

  15. Belmonte, A., Kahn, J.M.: Field conjugation adaptive arrays in free-space coherent laser communications. J. Opt. Commun. Netw. 3, 830–838 (2011)

    Article  Google Scholar 

  16. Aghajanzadeh, S.M., Uysal, M.: Diversity–multiplexing trade-off in coherent free-space optical systems with multiple receivers. J. Opt. Commun. Netw. 2, 1087–1094 (2010)

    Article  Google Scholar 

  17. Niu, M., Cheng, J., Holzman, J.F.: Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels. Opt. Express 18, 13915–13926 (2010)

    Article  Google Scholar 

  18. Lee, E.J., Chan, V.W.: Diversity coherent and incoherent receivers for free-space optical communication in the presence and absence of interference. J. Opt. Commun. Netw. 1, 463–483 (2009)

    Article  Google Scholar 

  19. Belmonte, A., Kahn, J.M.: Capacity of coherent free-space optical links using diversity-combining techniques. Opt. Express 17, 12601–12611 (2009)

    Article  Google Scholar 

  20. Vilnrotter, V.A., Srinivasan, M.: Adaptive detector arrays for optical communications receivers. IEEE Trans. Commun. 50, 1091–1097 (2002)

    Article  Google Scholar 

  21. Weeks, A.R., Xing, J., Phillips, R., Andrews, L.C., Stickley, C.M., Sellar, G., Stryjewski, J.S., Harvey, J.E.: Experimental verification and theory for an eight-element multiple-aperture equal-gain coherent laser receiver for laser communications. Appl. Optics 37, 4782–4788 (1998)

    Article  Google Scholar 

  22. Gagliardi, R.M., Karp, S.: Optical Communications. Wiley (1995)

    Google Scholar 

  23. Winick, K.A.: Atmospheric turbulence-induced signal fades on optical heterodyne communication links. Appl. Opt. 25, 1817–1825 (1986)

    Article  Google Scholar 

  24. Churnside, J.H., McIntyre, C.M.: Heterodyne receivers for atmospheric optical communications. Appl. Opt. 19, 582–590 (1980)

    Article  Google Scholar 

  25. Churnside, J.H., McIntyre, C.M.: Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 1: theory. Appl. Opt. 17, 2141–2147 (1978)

    Article  Google Scholar 

  26. Strohbehn, J.W., Wang, T., Speck, J.P.: On the probability distribution of line-of-sight fluctuations of optical signals. Radio Sci. 10, 59–70 (1975)

    Article  Google Scholar 

  27. Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media. SPIE Press (2005)

    Google Scholar 

  28. Fried, D.L.: Optical heterodyne detection of an atmospherically distorted signal wave front. Proc. IEEE 55, 57–67 (1967)

    Article  Google Scholar 

  29. Fried, D.L.: Atmospheric modulation noise in an optical heterodyne receiver. IEEE J. Quantum Electron. QE-3, 213–221 (1967)

    Google Scholar 

  30. Mahajan, V.N.: Optical Imaging and Aberrations, Part II. Wave Diffraction Optics. SPIE Press (2004)

    Google Scholar 

  31. Goodman, J.W.: Speckle Phenomena in Optics. Theory and Applications. Ben Roberts & Company (2007)

    Google Scholar 

  32. Nakagami M.: The m-distribution. A general formula of intensity distribution of rapid fading. In: Hoffman, W.C. (ed.) Statistical Methods in Radio Wave Propagation. Pergamon Press (1960)

    Google Scholar 

  33. Simon, M.K., Alouini, M.-S.: A unified approach to the performance analysis of digital communications over generalized fading channels. IEEE Proc. 86, 1860–1877 (1998)

    Article  Google Scholar 

  34. Parsons, J.D.: Diversity techniques in communications receivers. In: Creasey, D.A. (ed.) Advanced Signal Processing. Peregrinus, Chap. 6 (1985)

    Google Scholar 

  35. Aalo, V.A.: Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment. IEEE Trans. Commun. 43, 2360–2369 (1995)

    Article  Google Scholar 

  36. Win, M.Z., Chrisikos, G., Winters, J.H.: MRC performance for M-ary modulation in arbitrarily correlated Nakagami fading channels. IEEE Commun. Lett. 4, 301–303 (2000)

    Article  Google Scholar 

  37. Proakis, J.G., Salehi, M.: Digital Communications. Mc Graw-Hill (2007)

    Google Scholar 

  38. Goldsmith, A.: Wireless Communications. Cambridge University Press (2005)

    Google Scholar 

  39. Pawula, R.F., Rice, S.O., Roberts, J.H.: Distribution of the phase angle between two vectors perturbed by Gaussian noise. IEEE Trans. Commun. COM-30, 1828–1841 (1982)

    Google Scholar 

  40. Shannon, C.E.: A mathematical theory of communications. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhu, X., Kahn, J.: Free space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50, 1293–1300 (2002)

    Article  Google Scholar 

  42. Haas, S., Shapiro, J.H.: Capacity of wireless optical communications. IEEE J. Sel. Areas Commun. 21, 1346–1357 (2003)

    Article  Google Scholar 

  43. Anguita, J.A., Djordjevic, I.B., Neifeld, M., Vasic, B.V.: Shannon capacities and error-correction codes for optical atmospheric turbulent channels. J. Opt. Netw. 4, 586–601 (2005)

    Article  Google Scholar 

  44. Lee, E.J., Chan, V.W.S.: Part 1: optical communication over the clear turbulent atmospheric channel using diversity. J. Select. Areas Commun. 22, 1896–1906 (2005)

    Article  Google Scholar 

  45. Wilson, S.G., Brandt-Pearce, M., Cao, Q., Leveque, J.H.: Free-space optical MIMO transmission with Q-ary PPM. IEEE Trans. Commun. 53, 1402–1412 (2005)

    Article  Google Scholar 

  46. Chakraborty, K., Dey, S., Franceschetti, M.: Outage capacity of MIMO poisson fading channels. IEEE Trans. Inf. Theory 54, 4887–4907 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Cvijetic, N., Wilson, S.G., Brandt-Pearce, M.: Performance bounds for free-space optical MIMO systems with APD receivers in atmospheric turbulence. IEEE. J. Select. Areas. Commun. 26, 3–12 (2008)

    Article  Google Scholar 

  48. Dohler, M., Arndt, M.: Inverse incomplete gamma function and its application. Electron. Lett. 42, 35–36 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The research of Aniceto Belmonte was partially funded by the Spanish Department of Science and Innovation MICINN Grant No. TEC 2012-34799 and the European Space Agency ESA/ESTEC Ref. 5401000780.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniceto Belmonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belmonte, A., Kahn, J.M. (2016). Satellite Downlink Coherent Laser Communications. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics