Skip to main content

Cobalt/Cobaltoxide Exchange Bias System for Diluted Ferromagnetic Alloy Films in Superconducting Spin-Valves

  • Chapter
  • First Online:
Nanostructures and Thin Films for Multifunctional Applications

Abstract

The present work reports on the influence of a Cobalt sublayer on a conventional exchange bias CoOx/Cu41Ni59 interface. For superconducting spintronics the ability to exchange bias diluted ferromagnetic alloys is an essential building block, as they have advantages for the application in superconductor-ferromagnet spin-valve heterostructures. The magnetic properties are investigated by SQUID magnetometry and two separate strongly exchange biased signals are observed. The obtained results are compared with predictions of the domain state and spin-glass model of exchange bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Hauser, H.C. Theuerer, N.R. Werthamer, Phys. Rev. 142, 118 (1966)

    Article  Google Scholar 

  2. A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005)

    Article  Google Scholar 

  3. F.S. Bergeret, A.F. Volkov, K.B. Efetov, Rev. Mod. Phys. 77, 1321 (2005)

    Article  Google Scholar 

  4. K.B. Efetov, I.A. Garifullin, A.F. Volkov, K. Westerholt, Proximity effects in ferromagnet/superconductor heterostructures, in Magnetic Heterostructures, ed. by H. Zabel, S.D. Bader. Springer Tracts in Modern Physics, vol. 227 (Springer, Berlin, 2008), Ch. 5, pp. 251−290

    Google Scholar 

  5. M. Eschrig, Phys. Today 64, 43 (2011)

    Article  Google Scholar 

  6. A.I. Buzdin, M.Yu. Kupriyanov, Pis’ma v ZhETF 53, 308 [JETP Lett. 25, 290 (1991)]

    Google Scholar 

  7. V.V. Ryazanov, Physics—Uspekhi 42, 825 (1999)

    Google Scholar 

  8. V.V. Ryazanov, V.A. Oboznov, AYu. Rusanov, A.V. Veretennikov, A.A. Golubov, J. Aarts, Phys. Rev. Lett. 86, 2427 (2001)

    Article  Google Scholar 

  9. S. Oh, D. Youm, M. Beasley, Appl. Phys. Lett. 71, 2376 (1997)

    Article  Google Scholar 

  10. L.R. Tagirov, Phys. Rev. Lett. 83, 2058 (1999)

    Article  Google Scholar 

  11. A.I. Buzdin, A.V. Vedyayev, N.V. Ryzhanova, Europhys. Lett. 48, 686 (1999)

    Article  Google Scholar 

  12. Y.V. Fominov, A.A. Golubov, T.Yu. Karminskaya, M.Y. Kupriyanov, R.G. Deminov, L.R. Tagirov, Pis’ma v ZhETF 91, 329 (2010) [JETP Lett. 91, 308 (2010)]

    Google Scholar 

  13. A.V. Ustinov, V.K. Kaplunenko, J. Appl. Phys. 94, 5405 (2003)

    Article  Google Scholar 

  14. L.V. Mercaldo, C. Attanasio, C. Coccorese, L. Maritato, S.L. Prischepa, M. Salvato, Phys. Rev. B 53, 14040 (1996)

    Article  Google Scholar 

  15. A. Rusanov, R. Boogaard, M. Hesselberth, H. Sellier, J. Aarts, Physica C 369, 300 (2002)

    Article  Google Scholar 

  16. V.V. Ryazanov, V.A. Oboznov, A.S. Prokofiev, S.V. Dubonos Pis’ma v ZhETF 77, 43 (2003) [JETP Lett. 77, 39 (2003)]

    Google Scholar 

  17. C. Baraduc, F. Lefloch, R. Calemczuk, Phys. Rev. B 68, 054531 (2003)

    Article  Google Scholar 

  18. L. Crétinon, A.K. Gupta, H. Sellier, F. Lefloch, M. Fauré, A. Buzdin, H. Courtois, Phys. Rev. B 72, 024511 (2005)

    Article  Google Scholar 

  19. C. Cirillo, S.L. Prischepa, M. Salvato, C. Attanasio, M. Hesselberth, J. Aarts, Phys. Rev. B 72, 144511 (2005)

    Article  Google Scholar 

  20. A. Potenza, C.H. Marrows, Phys. Rev. B 71, 180503 (2005)

    Article  Google Scholar 

  21. J. Kim, J.H. Kwon, K. Char, H. Doh, H.-Y. Choi, Phys. Rev. B 72, 014518 (2005)

    Article  Google Scholar 

  22. G.P. Pepe, R. Latempa, L. Parlato, A. Ruotolo, G. Ausanio, G. Peluso, A. Barone, A.A. Golubov, Y.V. Fominov, Y.V. Kupriyanov, Phys. Rev. B 73, 054506 (2006)

    Article  Google Scholar 

  23. M.I. Khabipov, D.V. Balashov, F. Maibaum, A.B. Zorin, V.A. Oboznov, V.V. Bol’ginov, A.N. Rossolenko, V.V. Ryazanov, Supercond. Sci. Techol. 23 045032 (2010)

    Google Scholar 

  24. A.K. Feofanov, V.A. Oboznov, V.V. Bol’ginov, J. Lisenfeld, S. Poletto, V.V. Ryazanov, A.N. Rossolenko, M. Khabipov, D. Balashov, A.B. Zorin, P.N. Dmitriev, V.P. Koshelets, A.V. Ustinov, Nat. Phy. 6, 593 (2010)

    Google Scholar 

  25. V.V. Ryazonov, V.V. Bol’ginov, D.S. Sobanin, I.V. Vernik, S.K. Tolpygo, A.M. Kadin, O.A. Mukhanov, Physics Procedia 36, 35 (2012)

    Google Scholar 

  26. V.I. Zdravkov, A.S. Sidorenko, G. Obermeier, S. Gsell,M. Schreck, C. Müller, S. Horn, R. Tidecks, L.R. Tagirov, Phys. Rev. Lett. 97, 057004 (2006)

    Google Scholar 

  27. V.I. Zdravkov, J. Kehrle, G. Obermeier, S. Gsell, M. Schreck, C. Müller, H.-A. Krug von Nidda, J. Lindner, J. Moosburger-Will, E. Nold, R. Morari, V.V. Ryazanov, S.A. Sidorenko, S. Horn, R. Tidecks, L.R. Tagirov, Phys. Rev. B 82, 054517 (2010)

    Article  Google Scholar 

  28. V.I. Zdravkov, J. Kehrle, G. Obermeier, A. Ulrich, S. Gsell, M. Schreck, C. Müller, R. Morari, A.S. Sidorenko, L.R. Tagirov, R. Tidecks, S. Horn, Supercond. Sci. Technol. 24, 095004 (2011)

    Article  Google Scholar 

  29. J. Kehrle, V.I. Zdravkov, G. Obermeier, J. Garcia-Garcia, A. Ullrich, C. Müller, R. Morari, A.S. Sidorenko, S. Horn, L.R. Tagirov, R. Tidecks, Ann. Phys. 524, 37 (2012)

    Article  Google Scholar 

  30. I. Žutić, J. Fabian, Das Sarma. S. Rev. Mod. Phys. 76, 323 (2004)

    Article  Google Scholar 

  31. D.C. Ralph, M.D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008)

    Article  Google Scholar 

  32. N. Locatelli, V. Cros, J. Grollier, Nat. Mater. 13, 11 (2014)

    Article  Google Scholar 

  33. J.Y. Gu, C.-Y. You, J.S. Jiang, J. Pearson, Y.B. Bazaliy, S.D. Bader, Phys. Rev. Lett. 89, 267001 (2002)

    Article  Google Scholar 

  34. R. Steiner, P. Ziemann, Phys. Rev. B 74, 094504 (2006)

    Article  Google Scholar 

  35. I.C. Moraru, W.P. Pratt Jr., N.O. Birge, Phys. Rev. Lett. 96, 037004 (2006)

    Google Scholar 

  36. I.C. Moraru, W.P. Pratt Jr., N.O. Birge. Phys. Rev. B 74, 220507 (2006)

    Google Scholar 

  37. J. Aarts, A.Y. Rusanov, C.R. Physique 7, 99 (2006)

    Google Scholar 

  38. A.Y. Rusanov, S. Habraken, J. Aarts, Phys. Rev. B 73, 060505 (2006)

    Article  Google Scholar 

  39. A. Singh, C. Surgers, H.V. Löhneysen Phys. Rev. B 75, 024513 (2007)

    Google Scholar 

  40. A. Singh, C. Sürgers, H.V. Löhneysen, R.T. Hoffmann, V. Ashworth, N. Pilet, H.J. Hug, Appl. Phys. Lett. 91, 152504 (2007)

    Google Scholar 

  41. D.H. Kim, T.J. Hwang, Physica C 455, 58 (2007)

    Article  Google Scholar 

  42. G. Nowak, H. Zabel, K. Westerholt, I. Garifullin, M. Marcellini, A. Liebig, B. Hjörvarsson, Phys. Rev. B 78, 134520 (2008)

    Article  Google Scholar 

  43. P.V. Leksin, R.I. Salikhov, I.A. Garifullin, H. Vinzelberg, V. Kataev, R. Klingeler, L.R. Tagirov, B.Büchner, Pis’ma v ZhETF 90, 64 (2009) [JETPL 90, 59 (2009)]

    Google Scholar 

  44. J. Zhu, X. Cheng, C. Boone, I.N. Krivorotov, Phys. Rev. Lett. 103, 027004 (2009)

    Article  Google Scholar 

  45. Y. Luo, K. Samwer, Europhys. Lett. 91, 37003 (2010)

    Article  Google Scholar 

  46. P.V. Leksin, N.N. Garif’yanov, I.A. Garifullin, J. Schumann, H. Vinzelberg, V.E. Kataev, R. Klingeler, O.G. Schmidt, B. Büchner, Appl. Phys. Lett. 97, 102505 (2010)

    Google Scholar 

  47. P.V. Leksin, N.N. Garif’yanov, I.A. Garifullin, J. Schumann, H. Vinzelberg, V.E. Kataev, R. Klingeler, O.G. Schmidt, B. Büchner, Appl. Phys. Lett. 106, 067005 (2011)

    Google Scholar 

  48. T.Y. Karminskaya, M.Y. Kupriyanov, Pis’ma v ZhETF 86, 65 (2007) [JETP Lett. 86, 61 (2007)]

    Google Scholar 

  49. M. Houzet, A.I. Buzdin, Phys. Rev. B 76, 060504(R) (2007)

    Article  Google Scholar 

  50. T.Y. Karminskaya, M.Y. Kupriyanov, Pis’ma v ZhETF 87, 657 (2008) [JETP Lett. 87, 570 (2008)]

    Google Scholar 

  51. T.I. Larkin, V.V. Bol’ginov, V.S. Stolyarov, V.V. Ryazanov, I.V. Vernik, S.K. Tolpygo, O.A. Mukhanov, Appl. Phys. Lett. 100, 222601 (2012)

    Google Scholar 

  52. I.V. Vernik., V.V. Bol’ginov, S.V. Bakurskiy, A.A. Golubov, M.Y. Kupriyanov, V.V. Ryazanov, O.A. Mukhanov IEEE Trans. Appl. Supercond. 23, 1701208 (2013)

    Google Scholar 

  53. V.I. Zdravkov, D. Lenk, R. Morari, A. Ullrich, G. Obermeier, C. Müller, H.-A. Krug von Nidda, A.S. Sidorenko, S. Horn, R. Tidecks, L.R. Tagirov, Appl. Phys. Lett. 103, 062604 (2013)

    Article  Google Scholar 

  54. J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)

    Article  Google Scholar 

  55. E.E. Fullerton, J.S. Jiang, S.D. Bader, J. Magn. Magn. Mater. 200, 392 (1999)

    Article  Google Scholar 

  56. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J.S. Muñoz, M.D. Baró, Phys. Rep. 422, 65 (2005)

    Article  Google Scholar 

  57. F. Radu, H. Zabel, Exchange bias effect of ferro-/antiferromagnetic heterostructures, in Magnetic Heterostructures, ed. by H. Zabel, S.D. Bader. Springer Tracts in Modern Physics, vol. 227, (Springer, Berlin 2008), Ch. 3, pp 97–184

    Google Scholar 

  58. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  Google Scholar 

  59. V.I. Zdravkov, J. Kehrle, D. Lenk, G. Obermeier, A. Ullrich, C. Müller, H.-A. Krug von Nidda, A.S. Sidorenko, L.R. Tagirov, L.R. Horn, R. Tidecks, J. Appl. Phys. 114, 033903 (2013)

    Article  Google Scholar 

  60. A. Ruotolo, C. Bell, C.W. Leung, M.G. Blamire, J. Appl. Phys. 96, 512 (2004)

    Article  Google Scholar 

  61. I.S. Veshchunov, V.A. Oboznov, A.N. Rossolenko, A.S. Prokofiev, L.Y. Vinnikov, A.Y. Rusanov, D.V. Matveev, Pis’ma v ZhETF 88, 873 (2008) [JETP Lett. 88, 758 (2008)]

    Google Scholar 

  62. V.I. Zdravkov, J. Kehrle, G. Obermeier, D. Lenk, H.-A. Krug von Nidda, C. Muller, M.Y. Kupriyanov, A.S. Sidorenko, S. Horn, R. Tidecks, L.R. Tagirov, Phys. Rev. B 87, 004500 (2013)

    Article  Google Scholar 

  63. M.-F. Lai, C.-R.Chang, J.C. Wu, Z.-H. Wei, J.H. Kuo, J.-Y. Lai, IEEE Trans. Magn. 38, 2550 (2002)

    Google Scholar 

  64. C. Cirillo, C. A. García-Santiago , J.M. Hernandez, C. Attanasio, J. Tejada, J. Phys.: Condens. Matter 25, 176001 (2013)

    Google Scholar 

  65. M.G. Blamire, M. Ali, C.-W. Leung, C.H. Marrows, B.J. Hickey, Phys. Rev. Lett. 98, 217202 (2007)

    Article  Google Scholar 

  66. U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, Phys. Rev. B 66, 014430 (2002)

    Article  Google Scholar 

  67. C.A.F. Vaz, E.I. Altman, V.E. Henrich, Phys. Rev. B 81, 104428 (2010)

    Article  Google Scholar 

  68. J. Kehrle, The Fulde-Ferrell Larkin-Ovchinnikov like state in bilayers and trilayers of superconducting and ferromagnetic thin films. Ph.D. thesis, University of Augsburg, Germany, 2012

    Google Scholar 

  69. J. Wang, W.N. Wang, X. Chen, H.W. Zhao, J.G. Zhao, WSh Zhan, Appl. Phys. Lett. 77, 2731 (2000)

    Article  Google Scholar 

  70. S.O. Demokritov, J. Phys. D Appl. Phys. 31, 925 (1998)

    Article  Google Scholar 

  71. J. Camarero, Y. Pennec, J. Vogel, M. Bonfim, S. Pizzini, F. Ernult, F. Fettar, F. Garcia, F. Lançon, L. Billard, B. Dieny, A. Tagliaferri, N.B. Brookes, Phys. Rev. Lett. 91, 027201 (2003)

    Article  Google Scholar 

  72. S.A. Ahern, M.J.C. Martin, W. Sucksmith, Proc. Roy. Soc. London, A248, 145 (1958)

    Google Scholar 

  73. V.S.R Murthy, A.K. Jena, K.P. Gupta, G.S. Murty, Structure and Properties of Engineering Materials; Tata McGraw Hill: New Delhi Ch. 12, p. 381 (2003)

    Google Scholar 

  74. S. Chikazumi, Physics of Ferromagnetism, 2nd Edition, Oxford University Press: Oxford, New York §19.1. (1997)

    Google Scholar 

  75. M.A. Garcia, E. Fernandez Pinel, J. de la Venta, A. Quesada, V. Bouzas, F. Fernández, J.J. Romero, M.S. Martín González, J.L. Costa-Krämer, J. Appl. Phys. 105, 013925 (2009)

    Google Scholar 

  76. D. Hautot, Q.A. Pankhurst, J. Dobson, Rev. Sci. Instrum. 76, 045101 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to S. Heidemeyer, B. Knoblich, and W. Reiber for assistance in the TEM-sample preparation, additionally to W. Reiber for assistance in RBS-Measurements, and to D. Vieweg for assistance in magnetic measurements.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under the Grant No. HO 955/9-1. L.R.T. was supported in part by the Russian Fund for Basic Research (RFBR) under the Grant No. 16-02-01171-a and by the Program of Competitive Growth of Kazan Federal University funded by Russian Government. R.M. was partially supported by the Program of Competitive Growth of Kazan Federal University funded by Russian Government. The magnetic investigations (H.-A. K.v.N.) were partially supported by the Deutsche Forschungsgemeinschaft (DFG) within the Transregional Collaborative Research Center TRR 80 “From Electronics Correlations to Functionality” (Augsburg, Munich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sidorenko .

Editor information

Editors and Affiliations

Appendix

Appendix

From the magnetic moment per atom, m at, the saturation magnetic moment, m s, of samples III and IV can be calculated, summing up the saturation magnetic moments m L of the Co and Cu41Ni59 layers of the thin-film heterostructure, according to m L = m at (V L /V mol, L) N A. Here V L is the volume of the respective layer, V mol, L is the molar volume of the material of the layer, and N A is the Avogadro constant. With m at,Cu41Ni59 = 0.14 μ B [72] and m at,Co = 1.7 μ B [73], V mol,Cu41Ni59 = 6.8 cm3 [27], V mol,Co = 6.62 cm3, μ B = 0.9274 · 10-20 emu [27], and considering that the area of sample III and IV is A = 19.75 mm2 and A = 27.0 mm2, respectively, we obtain 1.80 · 10-4 emu and 1.61 · 10-4 emu for m s of sample III and IV, respectively. This is considerably larger than the magnetic moment observed for a magnetic field of 5 kOe in Figs. 9.4 and 9.5, respectively. One has, however, to consider that a large diamagnetic background of the 0.5 mm thick Si substrate is present in such measurements. Therefore, the measured total magnetic moment is lower than that one of the ferromagnetic material. For high magnetic fields, as soon as the ferromagnetic material has reached its saturation magnetization, the m(H) curve becomes a straight line (see, e.g., [27] for a measurement of a single Cu41Ni59 film on a Si substrate). However, in the field range of Figs. 9.4, 9.5 and 9.6 this linear behavior is almost not visible. The reason may be a linear paramagnetic contribution from the CoOx antiferromagnet [74] superimposed to the diamagnetic contribution. Moreover, one has to consider that there are several sources of experimental errors possible in SQUID measurements of small magnetic moments, as discussed in detail by Garcia et al. [75] and Hautot et al. [76].

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sidorenko, A.S. et al. (2016). Cobalt/Cobaltoxide Exchange Bias System for Diluted Ferromagnetic Alloy Films in Superconducting Spin-Valves. In: Tiginyanu, I., Topala, P., Ursaki, V. (eds) Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30198-3_9

Download citation

Publish with us

Policies and ethics