Skip to main content

Dynamic Measurements of Magnetoelectricity in Metglas-Piezocrystal Laminates

  • Chapter
  • First Online:
Nanostructures and Thin Films for Multifunctional Applications

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter describes an experimental technique, developed experimental setup and respective experimental study of the dynamic properties of direct magnetolelectric (ME) effect measured in metglas-piezocrystal laminates. We have prepared a variety of different magnetoelectric laminates by bonding magnetostrictive metglas foils onto single-crystalline substrates of LiNbO3 (LNO), GaPO4 (GPO) and PMN-PT. The measurements have been performed as a function of the crystal cut, magnitude and orientation of the magnetic bias field and the frequency of the modulation field. Despite much weaker PE coefficients of LNO and GPO, direct ME effects have been found to have comparative magnitudes in the samples based on them and on PMN-PT. Greatly enhanced ME coefficients in certain resonance modes are explored and their relations to the material properties of the crystals and the geometry of the composites are investigated. We demonstrate that control of the PE crystal’s orientation can be successfully used in order to obtain almost any desired quasi-static and resonant anisotropic ME properties for some given application. Such unique features as chemical stability, linear piezoelectricity, thermal robustness open up a real perspective to use lead-free LNO and α-GPO based ME tri-layers, e.g., as vector magnetic field sensors working in a wide range of temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101–031135 (2008)

    Article  Google Scholar 

  2. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38(8), R123–R152 (2005)

    Article  Google Scholar 

  3. J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)

    Article  Google Scholar 

  4. J. Ryu, S. Priya, K. Uchino, H.-E. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8(2), 107–119 (2002)

    Article  Google Scholar 

  5. M. Bichurin, D. Viehland, G. Srinivasan, Magnetoelectric interactions in ferromagnetic-piezoelectric layered structures: phenomena and devices. J. Electroceram. 19(4), 243–250 (2007)

    Article  Google Scholar 

  6. Y. Wang, J. Hu, Y. Lin, C.-W. Nan, Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2(2), 61–68 (2010)

    Article  Google Scholar 

  7. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, Magnetoelectric laminate composites: an overview. J. Am. Ceram. Soc. 91(2), 351–358 (2008)

    Article  Google Scholar 

  8. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Article  Google Scholar 

  9. D.R. Tilley, J.F. Scott, Frequency dependence of magnetoelectric phenomena in BaMnF4. Phys. Rev. B 25(5), 3251–3260 (1982)

    Article  Google Scholar 

  10. M.I. Bichurin, V.M. Petrov, O.V. Ryabkov, S.V. Averkin, G. Srinivasan, Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures. Phys. Rev. B 72(6), 060408–060411 (2005)

    Article  Google Scholar 

  11. M.I. Bichurin, V.M. Petrov, Y.V. Kiliba, G. Srinivasan, Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Phys. Rev. B 66(13), 134404–134413 (2002)

    Article  Google Scholar 

  12. G. Srinivasan, Magnetoelectric comosites. Annu. Rev. Matrer. Res. 40, 153–178 (2010)

    Article  Google Scholar 

  13. G. Sreenivasulu, S.K. Mandal, S. Bandekar, V.M. Petrov, G. Srinivasan, Low-frequency and resonance magnetoelectric effects in piezoelectric and functionally stepped ferromagnetic layered composites. Phys. Rev. B 84(14), 144426–144431 (2011)

    Article  Google Scholar 

  14. S.N. Babu, T. Bhimasankaram, S.V. Suryanarayana, Magnetoelectric effect in metal-PZT laminates. Bull. Mater. Sci. 28(5), 419–422 (2004)

    Article  Google Scholar 

  15. C.P. Zhao, F. Fang, W. Yang, A dual-peak phenomenon of magnetoelectric coupling in laminated Terfenol-D/PZT/Terfenol-D composites. Smart Mater. Struct. 19(12), 125004–125010 (2010)

    Article  Google Scholar 

  16. J. Ryu, A.V. Carazo, K. Uchino, H.-E. Kim, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40(8), 4948–4951 (2001)

    Article  Google Scholar 

  17. H. Greve, E. Woltermann, H.-J. Quenzer, B. Wagner, E. Quandt, Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96(18), 182501–182503 (2010)

    Article  Google Scholar 

  18. G. Sreenivasulu, V.M. Petrov, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Phys. Rev. B 86(21), 214405–214411 (2012)

    Article  Google Scholar 

  19. Y. Shen, K.L. McLaughlin, J. Gao, M. Li, J. Li, D. Viehland, Effective optimization of magnetic noise for a Metglas/Pb(Zr, Ti)O3 magnetoelectric sensor array in an open environment. Mater. Lett. 91, 307–310 (2013)

    Article  Google Scholar 

  20. Y. Wang, D. Gray, J. Gao, D. Berry, M. Li, J. Li, D. Viehland, H. Luo, Improvement of magnetoelectric properties in Metglas/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminates by poling optimization. J. Alloys Compd. 519, 1–3 (2012)

    Article  Google Scholar 

  21. R. Viswan, D. Gray, Y. Wang, Y. Li, D. Berry, J. Li, D. Viehland, Strong magnetoelectric coupling in highly oriented ZnO films deposited on Metglas substrates. Phys. Status Solidi-R 5(10–11), 391–393 (2011)

    Article  Google Scholar 

  22. G. Sreenivasulu, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Appl. Phys. Lett. 100(5), 052901–052904 (2012)

    Article  Google Scholar 

  23. G. Sreenivasulu, P. Qu, E. Piskulich, V.M. Petrov, Y.K. Fetisov, A.P. Nosov, H. Qu, G. Srinivasan, Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys. App. Phys. Lett. 105(3), 032409–032412 (2014)

    Article  Google Scholar 

  24. J.-P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71(3), 299–313 (2009)

    Article  Google Scholar 

  25. D.C. Lupascu, H. Wende, M. Etier, A. Nazrabi, I. Anusca, H. Trivedi, V.V. Shvartsman, J. Landers, S. Salamon, C. Schmitz-Antoniak, Measuring the magnetoelectric effect across scales. GAMM-Mitteilungen 38(1), 25–74 (2015)

    Article  Google Scholar 

  26. G.V. Duong, R. Groessinger, M. Schoenhart, D. Bueno-Basques, The lock-in technique for studying magnetoelectric effect. J. Mag. Mag. Mat. 316(2), 390–393 (2007)

    Article  Google Scholar 

  27. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaram, An experimental setup for dynamic measurement of magnetoelectric effect. Bull. Mater. Sci. 21(3), 251–255 (1998)

    Article  Google Scholar 

  28. Y.J. Wang, J.Q. Gao, M.H. Li, Y. Shen, D. Hasanyan, J.F. Li, D. Viehland, A review on equivalent magnetic noise of magnetoelectric laminate sensors. Phil. Trans. R. Soc. A 372(2009), 20120455 (2014)

    Article  Google Scholar 

  29. Y.K. Fetisov, K.E. Kamentsev, A.Y. Ostashchenko, G. Srinivasan, Wide-band magnetoelectric characterization of a ferrite-piezoelectric multilayer using a pulsed magnetic field. Solid State Commun. 132(1), 13–17 (2004)

    Article  Google Scholar 

  30. A.A. Timopheev, J.V. Vidal, A.L. Kholkin, N.A. Sobolev, Direct and converse magnetoelectric effects in Metglas/LiNbO3/Metglas trilayers. J. Appl. Phys. 114(4), 044102–044108 (2013)

    Article  Google Scholar 

  31. S. Priya, R. Islam, S. Dong, D. Viehland, Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 149–166 (2007)

    Article  Google Scholar 

  32. M. Vopsaroiu, J. Blackburn, M.G. Cain, Emerging technologies and opportunities based on the magneto-electric effect in multiferroic composites. MRS Proc. 1161, 1161-I05-04 (2009)

    Google Scholar 

  33. R.C. Kambale, D.-Y. Jeong, J. Ryu, Current status of magnetoelectric composite thin/thick films. Adv. Cond. Matter Phys. 2012, 824643 (2012)

    Google Scholar 

  34. J. More-Chevalier, C. Cibert, R. Bouregba, G. Poullain, Eddy currents: a misleading contribution when measuring magnetoelectric voltage coefficients of thin film devices. J. Appl. Phys. 117(15), 154104–154110 (2015)

    Article  Google Scholar 

  35. D.A. Burdin, D.V. Chashin, N.A. Ekonomov, L.Y. Fetisov, Y.K. Fetisov, G. Sreenivasulu, G. Srinivasan, Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. J. Mag. Mag. Mat. 358–359, 98–104 (2014)

    Article  Google Scholar 

  36. Y.K. Fetisov, D.A. Burdin, D.V. Chashin, N.A. Ekonomov, High-Sensitivity Wideband Magnetic Field Sensor Using Nonlinear Resonance Magnetoelectric Effect. Sens. J. IEEE, 14(7), 2252–2256 (2014)

    Google Scholar 

  37. Y. Chen, S.M. Gillette, T. Fitchorov, L. Jiang, H. Hao, J. Li, X. Gao, A. Geiler, C. Vittoria, V.G. Harris, Quasi-one-dimensional miniature multiferroic magnetic field sensor with high sensitivity at zero bias field. Appl. Phys. Lett. 99(4), 042505 (2011)

    Article  Google Scholar 

  38. J. Gao, Z. Wang, Y. Shen, M. Li, Y. Wang, P. Finkel, J. Li, D. Viehland, Self-powered low noise magnetic sensor. Mater. Lett. 82, 178–180 (2012)

    Article  Google Scholar 

  39. J. Gao, Y. Shen, P. Finkel, J. Blottman, J. Li, D. Viehland, Geomagnetic field tuned frequency multiplication in Metglas/Pb(Zr, Ti)O3 heterostructure. Mater. Lett. 88, 47–50 (2012)

    Article  Google Scholar 

  40. N.X. Sun, G. Srinivasan, Voltage control of magnetism in multiferroic heterostructures and devices. Spin 02(03), 12240004 (2012)

    Article  Google Scholar 

  41. C.A. Vaz, Electric field control of magnetism in multiferroic heterostructures. J. Phys.: Cond. Matt. 24(33), 333201 (2012)

    Google Scholar 

  42. M. Li, Y. Wang, D. Hasanyan, J. Li, D. Viehland, Giant converse magnetoelectric effect in multi-push-pull mode Metglas/Pb(Zr, Ti)O3/Metglas laminates. Appl. Phys. Lett. 100(13), 132904–132906 (2012)

    Article  Google Scholar 

  43. S. Dong, J. Zhai, F. Bai, J.-F. Li, D. Viehland, Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 87(6), 062502–062504 (2005)

    Article  Google Scholar 

  44. S.-E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804 (1997)

    Article  Google Scholar 

  45. C.-S. Park, K.-H. Cho, M.A. Arat, J. Evey, S. Priya, High magnetic field sensitivity in Pb(Zr, Ti)O3–Pb(Mg1/3Nb2/3)O3 single crystal/Terfenol-D/Metglas magnetoelectric laminate composites. J. Appl. Phys. 107(9), 094109 (2010)

    Article  Google Scholar 

  46. S. Dong, J. Cheng, J.F. Li, D. Viehland, Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr, Ti)O3 under resonant drive. Appl. Phys. Lett. 83(23), 4812–4814 (2003)

    Article  Google Scholar 

  47. S. Dong, J.-F. Li, D. Viehland, Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Appl. Phys. Lett. 83(11), 2265–2267 (2003)

    Article  Google Scholar 

  48. M. Bichurin, V. Petrov, A. Zakharov, D. Kovalenko, S.C. Yang, D. Maurya, V. Bedekar, S. Priya, Magnetoelectric interactions in lead-based and lead-free composites. Materials 4(4), 651–702 (2011)

    Article  Google Scholar 

  49. H.F. Tian, T.L. Qu, L.B. Luo, J.J. Yang, S.M. Guo, H.Y. Zhang, Y.G. Zhao, J.Q. Li, Strain induced magnetoelectric coupling between magnetite and BaTiO3. Appl. Phys. Lett. 92(6), 063507–063509 (2008)

    Article  Google Scholar 

  50. P. Yang, K. Zhao, Y. Yin, J.G. Wan, J.S. Zhu, Magnetoelectric effect in magnetostrictive/piezoelectric laminate composite Terfenol-D∕LiNbO3 [(zxtw) − 129°∕30°]. Appl. Phys. Lett. 88(17), 172903–172905 (2006)

    Article  Google Scholar 

  51. J.V. Vidal, A.A. Timopheev, A.L. Kholkin, N.A. Sobolev, Anisotropy of the magnetoelectric effect in tri-layered composites based on single-crystalline piezoelectrics. Vacuum 1–7

    Google Scholar 

  52. M. Yachi, M. Ono, The third overtone resonator using 36° rotated Y cut LiNbO3 crystal, inUltrasonics Symposium, 1995. Proceedings. 1995 IEEE, vol 2, p. 1003 (1995)

    Google Scholar 

  53. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 12(11), 2102–2116 (1995)

    Article  Google Scholar 

  54. A. Heinrich, A.L. Hörner, A. Wixforth, B. Stritzker, Pulsed laser deposition of La0.67Ca0.33MnO3 thin films on LiNbO3 and surface acoustic wave studies. Thin Solid Films 510(1–2), 77–81 (2006)

    Article  Google Scholar 

  55. A. Kawamata, H. Hosaka, T. Morita, Non-hysteresis and perfect linear piezoelectric performance of a multilayered lithium niobate actuator. Sens. Actuators A Phys. 135(2), 782–786 (2007)

    Article  Google Scholar 

  56. G. Matsunami, A. Kawamata, H. Hosaka, T. Morita, Multilayered LiNbO3 actuator for XY-stage using a shear piezoelectric effect. Sens. Actuators A Phys. 144(2), 337–340 (2008)

    Article  Google Scholar 

  57. L. Dreher, M. Weiler, M. Pernpeintner, H. Huebl, R. Gross, M.S. Brandt, S.T.B. Goennenwein, Surface acoustic wave driven ferromagnetic resonance in nickel thin films: theory and experiment. Phys. Rev. B 86(13), 134415 (2012)

    Article  Google Scholar 

  58. N. Obata, T. Kawahata, R. Suzuki, K. Nishimura, H. Uchida, M. Inoue, Fabrication and properties of InSb films with ion-beam sputtering for use in the amplification of magneto-surface-acoustic waves. Phys. Stat. Sol. (a) 201(8), 1973–1975 (2004)

    Article  Google Scholar 

  59. H.-Y. Kuo, A. Slinger, K. Bhattacharya, Optimization of magnetoelectricity in piezoelectric–magnetostrictive bilayers. Smart Mater. Struct. 19(12), 125010–125022 (2010)

    Article  Google Scholar 

  60. T. Wu, A. Bur, J.L. Hockel, K. Wong, T.-K. Chung, G.P. Carman, Electrical and mechanical manipulation of ferromagnetic properties in polycrystalline nickel thin film. IEEE Magn. Lett. 2, 6000104–6000104 (2011)

    Article  Google Scholar 

  61. R.S. Weis, T.K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985)

    Article  Google Scholar 

  62. P. Han, W. Yan, J. Tian, X. Huang, H. Pan, Cut directions for the optimization of piezoelectric coefficients of lead magnesium niobate–lead titanate ferroelectric crystals. Appl. Phys. Lett. 86(5), 052902–052904 (2005)

    Article  Google Scholar 

  63. A.W. Warner, M. Onoe, G.A. Coquin, Determination of elastic and piezoelectric constants for crystals in class (3 m). J. Acoust. Soc. Am. 42(6), 1223–1231 (1967)

    Article  Google Scholar 

  64. W. Yue, J. Yi-jian, Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3. Opt. Mater. 23(1–2), 403–408 (2003)

    Article  Google Scholar 

  65. C. Zhang, W. Chen, J. Li, J. Yang, Two-dimensional analysis of magnetoelectric effects in multiferroic laminated plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(5), 1046–1053 (2009)

    Article  Google Scholar 

  66. C. Zhang, W. Chen, C. Zhang, Two-dimensional theory of piezoelectric plates considering surface effect. Eur. J. Mech.—A/Solid. 41, 50–57 (2013)

    Article  Google Scholar 

  67. IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants-The Electromechanical Coupling Factor, 1958. Proc. IRE 46(4), 764–778 (1958)

    Google Scholar 

  68. R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg[sub 1/3]Nb[sub 2/3])O[sub 3]–0.33PbTiO[sub 3] single crystals. J. Appl. Phys. 90(7), 3471–3475 (2001)

    Article  Google Scholar 

  69. M.I. Bichurin, V.M. Petrov, G. Srinivasan, Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 68(5), 054402–054414 (2003)

    Article  Google Scholar 

  70. Z. Huang, Theoretical modeling on the magnetization by electric field through product property. J. Appl. Phys. 100(11), 114104–114108 (2006)

    Article  Google Scholar 

  71. M. Bichurin, V. Petrov, Modeling of Magnetoelectric Effects in Composites, Springer (2014), 9401791562, 9789401791564

    Google Scholar 

  72. G. Wu, T. Nan, R. Zhang, N. Zhang, S. Li, N.X. Sun, Inequivalence of direct and converse magnetoelectric coupling at electromechanical resonance. Appl. Phys. Lett. 103(18), 182905–182909 (2013)

    Article  Google Scholar 

  73. J.-P. Zhou, Y.-J. Ma, G.-B. Zhang, X.-M. Chen, A uniform model for direct and converse magnetoelectric effect in laminated composite. Appl. Phys. Lett. 104(20), 202904–202908 (2014)

    Article  Google Scholar 

  74. P. Davulis, J.A. Kosinski, M.P. da Cunha, GaPO4 Stiffness and Piezoelectric Constants Measurements using the Combined Thickness Excitation and Lateral Field Technique, in International Frequency Control Symposium and Exposition, pp. 664–669 (2006)

    Google Scholar 

  75. W. Wallnöfer, P.W. Krempl, A. Asenbaum, Determination of the elastic and photoelastic constants of quartz-type GaPO4 by Brillouin scattering. Phys. Rev. B 49(15), 10075–10080 (1994)

    Article  Google Scholar 

  76. J.V. Vidal, A.A. Timopheev, A.L. Kholkin, N.A. Sobolev, Anisotropy of the magnetoelectric effect in tri-layered composites based on single-crystalline piezoelectrics. Vacuum 122, Part B, 286–292 (2015)

    Google Scholar 

  77. F. Fang, C. Zhao, W. Yang, Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates. Sci. China Phys. Mech. Astron. 54(4), 581–585 (2011)

    Article  Google Scholar 

  78. D. Hasanyan, J. Gao, Y. Wang, R. Viswan, Y.S.M. Li, J. Li, D. Viehland, Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites. J. Appl. Phys. 112(1), 013908–013918 (2012)

    Article  Google Scholar 

  79. Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li, D. Viehland, H. Luo, Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites. J. Appl. Phys. 111(12), 124513–124518 (2012)

    Article  Google Scholar 

  80. S. Dong, J. Zhai, J. Li, D. Viehland, Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89(25), 252904–252906 (2006)

    Article  Google Scholar 

  81. R. Tinder, Tensor Properties of Solids (Morgan & Claypool, 2007), 9781598293494

    Google Scholar 

  82. L.W. Martin, R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Mater. 60(6–7), 2449–2470 (2012)

    Article  Google Scholar 

  83. H.-M. Zhou, Y.-H. Zhou, X.-J. Zheng, Q. Ye, J. Wei, A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials. J. Mag. Mag. Mat. 321(4), 281–290 (2009)

    Article  Google Scholar 

  84. M. Cochez, J.D. Foulon, A. Ibanez, A. Goiffon, E. Philippot, B. Capelle, A. Zarka, J. Schwartzel, J. Detaint, Crystal growth and characterizations of a quartz-like material: GaPO4. J. Phys. IV France, 04, C2-183–C2-188 (1994)

    Google Scholar 

  85. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176–1987, pp. 1–74 (1988)

    Google Scholar 

  86. K.-H. Cho, S. Priya, Direct and converse effect in magnetoelectric laminate composites. Appl. Phys. Lett. 98(23), 232904 (2011)

    Article  Google Scholar 

  87. D. Rajaram Patil, Y. Chai, R.C. Kambale, B.-G. Jeon, K. Yoo, J. Ryu, W.-H. Yoon, D.-S. Park, D.-Y. Jeong, S.-G. Lee, J. Lee, J.-H. Nam, J.-H. Cho, B.-I. Kim, K. Hoon Kim, Enhancement of resonant and non-resonant magnetoelectric coupling in multiferroic laminates with anisotropic piezoelectric properties. Appl. Phys. Lett. 102(6), 062909 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was developed in the scope of the projects I3N/FSCOSD (Ref. FCT UID/CTM/50025/2013), CICECO—Aveiro Institute of Materials—POCI-01-0145-FEDER-007679 (FCT Ref. UID /CTM /50011/2013), and RECI/FIS-NAN/0183/2012 (FCOMP-01-0124-FEDER-027494), financed by national funds through the FCT/MEC and when applicable cofinanced by FEDER under the PT2020 Partnership Agreement. J.V.V. and A.A.T. thank for the FCT grants SFRH/BD/89097/2012 and SFRH/BPD/74086/2010, respectively. N.A.S. acknowledges support by NUST “MISiS” through grant no. K3-2015-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai A. Sobolev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vidal, J.V., Timopheev, A.A., Kholkin, A.L., Sobolev, N.A. (2016). Dynamic Measurements of Magnetoelectricity in Metglas-Piezocrystal Laminates. In: Tiginyanu, I., Topala, P., Ursaki, V. (eds) Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30198-3_7

Download citation

Publish with us

Policies and ethics