Skip to main content

Thermal Conductivity of Segmented Nanowires

  • Chapter
  • First Online:
Nanostructures and Thin Films for Multifunctional Applications

Abstract

In this chapter we present a review of the phonon thermal conductivity of segmented nanowires focusing on the theoretical results for Si and Si/Ge structures with the constant and periodically modulated cross-sections. We describe the use of the face-centered cubic cell and Born-von Karman models of the lattice vibrations for calculating the phonon energy spectra in the segmented nanowires. Modification of the phonon spectrum in such nanostructures results in strong reduction of the phonon thermal conductivity and suppression of heat transfer due to a trapping of phonon modes in nanowire segments. Possible practical applications of segmented nanowires in thermoelectric energy generation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.A. Stroscio, M. Dutta, Phonons in Nanostructures (Cambridge University Press, 2001), p. 1

    Google Scholar 

  2. A. Balandin, K.L. Wang, Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 84, 6149 (1998)

    Article  Google Scholar 

  3. A. Balandin, K.L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B 58, 1544 (1998)

    Article  Google Scholar 

  4. A.A. Balandin, Phonon engineering in nanostructures and nanodevices. J. Nanosci. Nanotechnol. 5, 1015 (2005)

    Article  Google Scholar 

  5. A.A. Balandin, D.L. Nika, E.P. Pokatilov, Phonon engineering in hetero- and nanostructures. J. Nanoelectron. Optoelectron. 2, 140 (2007)

    Article  Google Scholar 

  6. J. Zou, A. Balandin, Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys. 89, 2932 (2001)

    Article  Google Scholar 

  7. N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68, 113308 (2003)

    Article  Google Scholar 

  8. A.A. Balandin, D.L. Nika, Phononics in low-dimensional materials. Mater. Today 15, 266 (2012)

    Article  Google Scholar 

  9. A. Khitun, A. Balandin, K.L. Wang, Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons. Superlattices Microstruct. 26, 181 (1999)

    Article  Google Scholar 

  10. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186 (2003)

    Article  Google Scholar 

  11. W. Liu, M. Asheghi, Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128, 75 (2006)

    Article  Google Scholar 

  12. A.I. Cocemasov, D.L. Nika, Phonons and Phonon Thermal Conductivity in Silicon Nanolayers. J. Nanoelectron. Optoelectron. 7, 370 (2012)

    Article  Google Scholar 

  13. D.G. Kahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.P. Phillport, Nanoscale thermal transport. J. Appl. Phys. 93, 793 (2003)

    Article  Google Scholar 

  14. A. Shakouri, Proc. IEEE 94, 1613 (2006)

    Article  Google Scholar 

  15. A.A. Balandin, Thermal properties of graphene and nanostructured carbon carbon materials. Nat. Mater. 10, 569 (2011)

    Article  Google Scholar 

  16. A. Khitun, A. Balandin, J.L. Liu, K.L. Wang, In-plane lattice thermal conductivity of a quantum-dot superlattice. J. Appl. Phys. 88, 696 (2000)

    Article  Google Scholar 

  17. O.L. Lazarenkova, A. Balandin, Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509 (2001)

    Article  Google Scholar 

  18. D.L. Nika, E.P. Pokatilov, Q. Shao, A.A. Balandin, Charge carrier states and light absorption in the ordered quantum dot superlattices. Phys. Rev. B 76, 125417 (2007)

    Article  Google Scholar 

  19. L. Weber, E. Gmelin, Transport properties of silicon. Appl. Phys. A 53, 136 (1991)

    Article  Google Scholar 

  20. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2007)

    Article  Google Scholar 

  21. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)

    Article  Google Scholar 

  22. P.N. Martin, Z. Aksamija, E. Pop, U. Ravaioli, Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires. Nano Lett. 10, 1120 (2010)

    Article  Google Scholar 

  23. M. Shelley, A.A. Mostofi, Prediction of high zT in thermoelectric silicon nanowires with axial germanium heterostructures. EPL 94, 67001 (2011)

    Article  Google Scholar 

  24. M Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, and Dimos Poulikakos, Nano Lett. 11, 618 (2011)

    Google Scholar 

  25. D.V. Crismari, D.L. Nika, Thermal conductivity reduction in Si/Ge core/shell nanowires. J. Nanoelectron. Optoelectron. 7, 701 (2012)

    Article  Google Scholar 

  26. X. Chen, Y. Wang, Y. Ma, High thermoelectric performance of Ge/Si core − shell nanowires: first-principles prediction. J. Phys. Chem. C 114, 9096 (2010)

    Article  Google Scholar 

  27. D.L. Nika, E.P. Pokatilov, A.A. Balandin, V.M. Fomin, A. Rastelli, O.G. Schmidt, Reduction of the lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering. Phys. Rev. B 84, 165415 (2011)

    Article  Google Scholar 

  28. D.L. Nika, A.I. Cocemasov, C.I. Isacova, A.A. Balandin, V.M. Fomin, O.G. Schmidt, Suppression of phonon heat conduction in cross-section modulated nanowires. Phys. Rev. B 85, 205439 (2012)

    Article  Google Scholar 

  29. D.L. Nika, A.I. Cocemasov, D.V. Crismari, A.A. Balandin, “Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires. Appl. Phys. Lett. 102, 213109 (2013)

    Article  Google Scholar 

  30. X. Zianni, Diameter-modulated nanowires as candidates for high thermoelectric energy conversion efficiency. Appl. Phys. Lett. 97, 233106 (2010)

    Article  Google Scholar 

  31. X. Zianni, Efficient thermoelectric energy conversion on quasi-localized electron states in diameter modulated nanowires. Nanoscale Res. Lett. 6, 286 (2011)

    Article  Google Scholar 

  32. G.D. Sulka, A. Brzozka, L. Liu, Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochim. Acta 56, 4972 (2011)

    Article  Google Scholar 

  33. P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 4, 50 (2009)

    Article  Google Scholar 

  34. L.-T. Fu, Z.-G. Chen, J. Zou, H.-T. Cong, G.-Q. Lu, Fabrication and visible emission of single-crystal diameter-modulated gallium phosphide nanochains. J. Appl. Phys. 107, 124321 (2010)

    Article  Google Scholar 

  35. D.S. Oliveira, J.H.G. Tizei, D. Ugarte, M.A. Cotta, Spontaneous periodic diameter oscillations in inp nanowires: the role of interface instabilities. Nano Lett. 13, 9 (2013)

    Article  Google Scholar 

  36. S.K. Lim, S. Crawford, G. Haberfehlner, S. Gradecak, Controlled modulation of diameter and composition along individual III–V nitride nanowires. Nano Lett. 13, 331 (2013)

    Article  Google Scholar 

  37. D.L. Nika, N.D. Zincenco, E.P. Pokatilov, Lattice thermal conductivity of ultra-thin freestanding layers: face-centered cubic cell model versus continuum approach. J. Nanoelectron. Optoelectron. 4, 170 (2009)

    Article  Google Scholar 

  38. D.L. Nika, N.D. Zincenco, E.P. Pokatilov, Engineering of thermal fluxes in phonon mismatched heterostructures. J. Nanoelectron. Optoelectron. 4, 180 (2009)

    Article  Google Scholar 

  39. D.L. Nika, E.P. Pokatilov, A.A. Balandin, Phonon—engineered mobility enhancement in the acoustically mismatched silicon/diamond transistor channels. Appl. Phys. Lett. 93, 173111 (2008)

    Article  Google Scholar 

  40. E.P. Pokatilov, D.L. Nika, A.A. Balandin, Acoustic phonon engineering in coated cylindrical nanowires. Superlettices Microstruct. 38, 168 (2005)

    Article  Google Scholar 

  41. E.P. Pokatilov, D.L. Nika, A.A. Balandin, Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures. Superlattices Microstruct. 33, 155 (2003)

    Article  Google Scholar 

  42. P.N. Keating, Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. B 145, 637 (1966)

    Article  Google Scholar 

  43. M. Born, K. Huang, Dynamic Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)

    Google Scholar 

  44. G. Leibfried, W. Ludwig, in Theory of Anharmonic Effects in Crystals, ed. by F. Seitz, D. Turnbull. Solid State Physics, vol. 12 (Academic, New York, 1961)

    Google Scholar 

  45. P. Giannozzi, S. de Gironcoli, P. Pavone, S. Baroni, Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231 (1991)

    Article  Google Scholar 

  46. G. Nilsson, G. Nelin, Phonon dispersion relations in ge at 80 k. Phys. Rev. B 3, 364 (1971)

    Article  Google Scholar 

  47. E.P. Pokatilov, D.L. Nika, A.A. Balandin, Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers. Phys. Rev. B 72, 113311 (2005)

    Article  Google Scholar 

  48. S. Volz, G. Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl. Phys. Lett. 75, 2056 (1999)

    Article  Google Scholar 

  49. D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (2009)

    Article  Google Scholar 

  50. D. Donadio, G. Galli, Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys. Rev. Lett. 99, 255502 (2009)

    Article  Google Scholar 

  51. N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003)

    Article  Google Scholar 

  52. B. Qiu, X. Ruan, Molecular dynamics simulation of lattice thermal conductivity of bismuth telluride using two-body interatomic potentials. Phys. Rev. B 80, 165203 (2009)

    Article  Google Scholar 

  53. A. Ladd, B. Moran, W. Hoover, Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B 34, 5058 (1986)

    Article  Google Scholar 

  54. A. Ward, D. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)

    Article  Google Scholar 

  55. E. Pokatilov, D. Nika, A. Balandin, A phonon depletion effect in ultrathin heterostructures with acoustically mismatched layers. Appl. Phys. Lett. 85, 825 (2004)

    Article  Google Scholar 

  56. M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge–Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507 (2011)

    Article  Google Scholar 

  57. C. Glassbrenner, G. Slack, Thermal conductivity of silicon and germanium from 3°k to the melting point. Phys. Rev. 134, A1058 (1964)

    Article  Google Scholar 

  58. J. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, 1960)

    Google Scholar 

  59. A. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)

    Article  Google Scholar 

  60. M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos, Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett. 11, 618 (2011)

    Article  Google Scholar 

  61. E.P. Pokatilov, D.L. Nika, A.S. Askerov, N.D. Zincenco, A.A. Balandin, The size-quantized oscillations of the optical-phonon-limited electron mobility in AlN/GaN/AlN nanoscale heterostructures. J. Phys. Conf. Ser. 92, 012022 (2007)

    Article  Google Scholar 

  62. K. Bi, J. Wang, Y. Wang, J. Sha, Z. Wang, The thermal conductivity of SiGe heterostructure nanowires with different cores and shells. Phys. Lett. A 376, 2668 (2012)

    Article  Google Scholar 

  63. M. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Thermal conductivity of Ge and Ge-Si core-shell nanowires in the phonon confinement regime. Nano Lett. 11, 5507 (2011)

    Article  Google Scholar 

  64. Z. Aksamija, I. Knezevic, Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes. Phys. Rev. B 82, 045319 (2010)

    Article  Google Scholar 

  65. Z. Aksamija, I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering. Appl. Phys. Lett. 98, 141919 (2011)

    Article  Google Scholar 

  66. E. Ramayya, D. Vasileska, S.M. Goodnick, I. Knezevic, Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering. J. Appl. Phys. 104, 063711 (2008)

    Article  Google Scholar 

  67. S. Jin, M. Fischetti, T.-W. Tang, Modeling of electron mobility in gated silicon nanowires at room temperature: surface roughness scattering, dielectric screening, and band nonparabolicity. J. Appl. Phys. 102, 083715 (2007)

    Article  Google Scholar 

  68. N. Yang, G. Zhang, B. Li, Ultralow thermal conductivity of isotope-doped silicon nanowires. Nano Lett. 8, 276 (2008)

    Article  Google Scholar 

  69. C. Dames, G. Chen, Theoretical phonon thermal conductivity of Si-Ge superlattice nanowires. J. Appl. Phys. 95, 682 (2004)

    Article  Google Scholar 

  70. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Monch, C. Deneke, O.G. Schmidt, J.M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, N. Mingo, Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat. Mater. 9, 491 (2010)

    Article  Google Scholar 

  71. J.-N. Gillet, Y. Chalopin, S. Volz, Atomic-scale three-dimensional phononic crystals with a very low thermal conductivity to design crystalline thermoelectric devices. J. Heat Transf. 131, 043206 (2009)

    Article  Google Scholar 

Download references

Acknowledgement

DLN and AIC acknowledge the financial support from the Republic of Moldova through the projects 15.817.02.29F and 14.820.18.02.012 STCU.A/5937 and from the Science and Technology Center in Ukraine (STCU, project #5937). The work at the University of California – Riverside was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis L. Nika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nika, D.L., Cocemasov, A.I., Balandin, A.A. (2016). Thermal Conductivity of Segmented Nanowires. In: Tiginyanu, I., Topala, P., Ursaki, V. (eds) Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30198-3_16

Download citation

Publish with us

Policies and ethics