Skip to main content

Template Assisted Formation of Metal Nanotubes

  • Chapter
  • First Online:
Nanostructures and Thin Films for Multifunctional Applications

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter provides a review of methods for the production of metal nanotubes and their applications. The importance of nanotemplated growth of nanowires and nanotubes for nanofabrication, and the advantages of nanotubes over nanowires are revealed. Technological approaches for producing various templates, as well as advantages and drawbacks of specific templates, such as ion-track membranes, porous alumina templates, and porous semiconductor templates for nanofabrication are discussed, especially with respect to their suitability for the production of metal nanotubes. Technological methods applied for deposition of metal nanotubes with a focus on electrodepostion and electroless deposition are overviewed for each type of porous templates, and their mechanisms and peculiarities are evidenced. The prospects of application of nanomaterials based on porous nanotemplates in electronics, energy sector, optics, photonics, computers and communications, magnetism and biomedical sciences are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.R. Martin, Nanomaterials, a membrane—based synthetic approach. Science 266, 1961 (1994)

    Article  Google Scholar 

  2. A. Fert, L. Piraux, Magnetic nanowires. J. Magn. Magn. Mater. 200, 338 (1999)

    Article  Google Scholar 

  3. I. Enculescu, Z. Siwy, D. Dobrev, C. Trautmann, M.E. Toimil Molares, R. Neumann, K. Hjort, L. Westerberg, R. Spohr. Copper nanowires electrodeposited in etched single-ion track templates. Appl. Phys. A 77, 751 (2003)

    Google Scholar 

  4. I. Enculescu, Nanowires and nanotubes prepared using iob track membrane templates. Digest J. Nanomater. Biostruct. 1(1), 15–20 (2006)

    Google Scholar 

  5. P. Lehana, S. Khan, S. Arya, Int. J. VLSI Signal. Proc. Appl. 1, 32 (2011)

    Google Scholar 

  6. J. Lee, P. Lee, H. Lee, D. Lee, S.S. Lee, S.H. Ko, Nanoscale 4, 6408 (2012)

    Article  Google Scholar 

  7. P.-C. Hsu, S. Wang, H. Wu, V.K. Narasimhan, D. Kong, H.R. Lee, Y. Cui, Nat. Commun. 4, 2522 (2013)

    Article  Google Scholar 

  8. D.A. Dinh, K.N. Hui, K.S. Hui, P. Kumar, J. Singh. Rev. Adv. Sci. Eng. 2, 324 (2013)

    Article  Google Scholar 

  9. Y. Zhang, W. Xu, S. Xu, G. Fei, Y. Xiao, J. Hu, Nanoscale Res. Lett. 7, 569 (2012)

    Article  Google Scholar 

  10. G. Hrkac, J. Dean, D.A. Allwood, Phil. Trans. Phil. Trans. R. Soc. A369, 3214 (2011)

    Article  Google Scholar 

  11. Y. Bian, Z. Cheng, X. Zhao, L. Liu, Y. Su, J. Xiao, J. Liu, J. Zhu, T. Zhou, J. Lightwave Technol. 31, 1973 (2013)

    Article  Google Scholar 

  12. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  Google Scholar 

  13. Ch. Valsecchi, Al. G. Brolo. Langmuir 29, 5638 (2013)

    Google Scholar 

  14. D.A. Bussian, S.A. Crooker, M. Yin, M. Brynda, Al. L. Efros, V.I. Klimov. Nat. Mater. 8, 35 (2008)

    Google Scholar 

  15. V.A. Vlaskin, R.G. Beaulac, R. Daniel, Nano Lett. 9, 4376 (2009)

    Article  Google Scholar 

  16. M.E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter. Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater. 13, 62 (2001)

    Google Scholar 

  17. T. Ohgai, I. Enculescu, C. Zet, L. Westerberg, K. Hjort, R. Spohr, R. Neumann, J. Appl. Electrochem. 36, 1157 (2006)

    Article  Google Scholar 

  18. W. Schwarzacher, O.I. Kasyutich, P.R. Evans, M.G. Darbyshire, G. Yi, V.M. Fedosyuk, F. Rousseaux, E. Cambril, D. Decanini. J. Magn. Magn. Mater. 198–199, 185 (1999)

    Google Scholar 

  19. L. Gravier, A. Fabian, A. Rudolf, A. Cachin, K. Hjort, J-Ph Ansermet, Meas. Sci. Tech. 15, 420 (2004)

    Article  Google Scholar 

  20. M. Sima, I. Enculescu, T. Visan, R. Spohr, C. Trautmann. Mol. Cryst. Liquid Cryst. 418, 21(749) (2004)

    Google Scholar 

  21. M. Sima, I. Enculescu, E. Vasile, J. Optoelectron. Adv. Mater. 8, 825 (2006)

    Google Scholar 

  22. T. Ohgai, L. Gravier, X. Hoffer, J-Ph Ansermet, J. Appl. Electrochem. 35, 479 (2005)

    Article  Google Scholar 

  23. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, Y. Tang, Chem. Phys. Lett. 325, 340 (2000)

    Article  Google Scholar 

  24. K. Nielsch, F. Müller, A. Li, U. Gösele, Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 12, 582 (2000)

    Article  Google Scholar 

  25. I.U. Schuchert, M.E. Toimil Molares, D. Dobrev, J. Vetter, R. Neumann, M. Martin. J. Electrochem. Soc. 150, C189 (2003)

    Google Scholar 

  26. W. Lee, R. Scholz, K. Nielsch, U. Gosele, Angew. Chem. Int. Ed. 44, 6050 (2005)

    Article  Google Scholar 

  27. G. Sharma, M.V. Pishko, C.A. Grimes, Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer. J. Mater. Sci. 42, 4738–4744 (2007)

    Article  Google Scholar 

  28. M. Motoyama, Y. Fukunaka, T. Sakka, Y.H. Ogata. Electrochim. Acta 53, 205 (20057)

    Google Scholar 

  29. E. Ferain, R. Legras. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate). Nucl. Instrum. Meth. B 82, 539–548 (1993)

    Google Scholar 

  30. E. Ferain, R. Legras, Track-etched membrane: dynamics of pore formation. Nucl. Instrum. Meth. B 84, 331–336 (1994)

    Article  Google Scholar 

  31. B. Bercu, I. Enculescu, R. Spohr, Nucl. Instrum. Meth. Phys. B 225, 497 (2004)

    Article  Google Scholar 

  32. I. Enculescu, M. Sima, M. Enculescu, E. Matei, M.E. Toimil Molares, Th. Cornelius. Nickel nanotubes prepared by electroless deposition in ion track templates. Optoelectr. Adv. Mater. Rapid Commun. 2, 133–136 (2008)

    Google Scholar 

  33. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Article  Google Scholar 

  34. G. Ali, M. Ahmad, J.I. Akhter, M. Maqbool, S.O. Cho, Novel structure formation in porous anodic alumina fabricated by single step anodization process. Micron 41, 560–564 (2010)

    Article  Google Scholar 

  35. G. Ali, M. Maqboo, Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition. Nanoscale Res. Lett. 8, 352 (2013)

    Article  Google Scholar 

  36. S. Shamaila, R. Sharif, S. Riaz, M. Khaleeq-ur-Rahman, X.F. Han. Fabrication and magnetic characterization of CoxPt1-X nanowire arrays. Appl. Phys. A. 92, 687–691 (2008)

    Google Scholar 

  37. S. Shamaila, R. Sharif, S. Riaz, M. Ma, M. Khaleeq-ur-Rahman, X.F. Han, Magnetic and magnetization properties of electrodeposited fcc CoPt nanowire arrays. J. Magn. Magn. Mater. 320, 1803–1809 (2008)

    Article  Google Scholar 

  38. S. Shamaila, R. Sharif, J.Y. Chen, H.R. Liu, X.F. Han, X.F. Magnetic, Field annealing dependent magnetic properties of Co1-xPtx nanowire arrays. J. Magn. Magn. Mater. 321, 3984–3989 (2009)

    Article  Google Scholar 

  39. R. Sharif, X.Q. Zhang, S. Shamaila, S. Riaz, L.X. Jiang, X.F. Han. Magnetic and magnetization properties of CoFeB nanowires. J. Magn. Magn. Mater. 310, e830–e832 (2007)

    Google Scholar 

  40. H. Masuda, H. Yamada, M. Satoh, H. Asoh, Appl. Phys. Lett. 71, 2770 (1997)

    Article  Google Scholar 

  41. C.L. Chen, Y.-Y. Chen, S.-J. Lin, J.C. Ho, P.-C. Lee, C.-D. Chen, S.R. Harutyunyan, Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. J. Phys. Chem. C 114, 3385–3389 (2010)

    Article  Google Scholar 

  42. R. Inguanta, M. Butera, C. Sunseri, S. Piazza, Fabrication of metal nano-structures using anodic alumina membranes grown in phosphoric acid solution: tailoring template morphology. Appl. Surf. Sci. 253, 5447–5456 (2007)

    Article  Google Scholar 

  43. K. Shimizu, K. Kobayashi, G.E. Thompson, G.C. Wood, Philos. Mag. A 66, 643–652 (1992)

    Article  Google Scholar 

  44. H. Fujikura, A. Liu, A. Hamamatsu, T. Sato, H. Hasegawa, Jpn. J. Appl. Phys. 39, 4616 (2000)

    Article  Google Scholar 

  45. T. Hirano, A. Ito, T. Sato, F. Ishikawa, H. Hasegawa, Jpn. J. Appl. Phys. 41, 977 (2002)

    Article  Google Scholar 

  46. H. Föll, S. Langa, J. Carstensen, M. Christophersen, I.M. Tiginyanu, Adv. Mater. 15, 183 (2003)

    Article  Google Scholar 

  47. H. Tsuchiya, M. Hueppe, T. Djenizian, P. Schmuki, Surf. Sci. 547, 268 (2003)

    Article  Google Scholar 

  48. S. Langa, M. Christophersen, J. Carstensen, I.M. Tiginyanu, H. Föll, Phys. Status Solidi A 197, 77 (2003)

    Article  Google Scholar 

  49. I.M. Tiginyanu, E. Monaico, V.V. Ursaki, V.E. Tezlevan, R.W. Boyd, Appl. Phys. Lett. 86, 063115 (2005)

    Article  Google Scholar 

  50. I.M. Tiginyanu, E. Monaico, V.V. Ursaki, E. Foca, H. Föll, Electrochem. Solid State Lett. 10, D127 (2007)

    Article  Google Scholar 

  51. I. Tiginyanu, E. Monaico, E. Monaico, Ordered arrays of metal nanotubes in semiconductor envelope. Electrochem. Commun. 10, 731 (2008)

    Article  Google Scholar 

  52. M.E. Toimil Molares, N. Chtanko, T.W. Cornelius, D. Dobrev, I. Enculescu, R.H. Blick, R. Neumann. Fabrication and contacting of single Bi nanowires. Nanotechnology 15, S 201–S 207 (2004)

    Google Scholar 

  53. M. Sima, I. Enculescu, C. Trautmann, R. Neumann, Electrodeposition of CdTe nanorods in ion track membranes. J. Optoelectron. Adv. Mater. 6, 121–125 (2004)

    Google Scholar 

  54. G.E. Possin, Forming very small diameter wires. Rev. Sci. Instrum. 41, 772 (1970)

    Article  Google Scholar 

  55. G.E. Possin. Superconductivity in nearly one-dimensional tin wires. Physica (Utrecht) 55, 339 (1971)

    Google Scholar 

  56. D.T. Mitchell, S.B. Lee, L. Trofin, N. Li, T.K. Nevanen, H. Soderlund, C.R. Martin, J. Am. Chem. Soc. 124, 11864 (2002)

    Article  Google Scholar 

  57. D. Routkevitch, J. Chan, J.M. Xu, M. Moskovits, Electrochem. Soc. Proc. Ser. PV 350, 97 (1997)

    Google Scholar 

  58. A.J. Yin, J. Li, W. Jian, A.J. Bennett, J.M. Xu, Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl. Phys. Lett. 79, 1039 (2001)

    Article  Google Scholar 

  59. H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, X. Liu, Generation and growth mechanism of metal (Fe Co, Ni) nanotube arrays. ChemPhysChem 7, 1500–1504 (2006)

    Article  Google Scholar 

  60. W.-C. You, J.-K. Lee, Field-dependent growth patterns of metals electroplated in nanoporous alumina membranes. Adv. Mater. 16, 1097–1101 (2004)

    Article  Google Scholar 

  61. W. Lee, R. Scholz, K. Nielsch, U. Gosele, A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. 117, 6204–6208 (2005)

    Article  Google Scholar 

  62. D.D. Sung, M.S. Choo, J.S. Noh, W.B. Chin, W.S. Yang, A new fabrication method of aluminum nanotube using anodic porous alumina film as a template. Bull. Korean Chem. Soc. 27, 1159 (2006)

    Article  Google Scholar 

  63. G.N. Ivanova, D.D. Nedeoglo, N.D. Negeoglo, V.P. Sirkeli, I.M. Tiginyanu, V.V. Ursaki, J. Appl. Phys. 101, 063543 (2007)

    Article  Google Scholar 

  64. I.M. Tiginyanu, V.V. Ursaki, E. Monaico, M. Enachi, V.V. Sergentu, G. Colibaba, D.D. Nedeoglo, A. Cojocaru, H. Föll, Quasi-ordered networks of metal nanotubes embedded in semiconductor matrices for photonic applications. J. Nanoelectr. Optoelectr. 6, 463–472 (2011)

    Article  Google Scholar 

  65. I. Tiginyanu, E. Monaico, V. Sergentu, A. Tiron, V. Ursaki, Metallized porous GaP templates for electronic and photonic applications. ECS J. Solid State Sci. Technol. 4, P57–P62 (2015)

    Article  Google Scholar 

  66. D. Vanmaekelbergh, A. Koster, F.I. Marin, Adv. Mater. 9, 575 (1997)

    Article  Google Scholar 

  67. M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, J.W. Haus, Opt. Express 15, 508 (2007)

    Article  Google Scholar 

  68. M. Bloemer, G. D’Aguanno, M. Scalora, N. Mattiucci, D. de Ceglia, Opt. Express 16, 19342 (2008)

    Article  Google Scholar 

  69. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  70. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  71. L.-M. Li, Z.-Q. Zhang, Multiple-scattering approach to finite-sized photonic band-gap materials. Phys. Rev. B 58, 9587 (1998)

    Article  Google Scholar 

  72. V.V. Sergentu, I.M. Tiginyanu, V.V. Ursaki, M. Enachi, S.P. Albu, P. Schmuki. Negative index material lenses based on metallo-dielectric nanotubes. Phys. Stat. Sol. (RRL) 2, 242 (2008)

    Google Scholar 

  73. M. Hofman, G. Scherrer, M. Kadic, X. Melique, W. Smigaj, B. Cluzel, S. Guenneau, D. Lippens, F. de Fornel, B. Gralak, O. Vanbesien, J. Nanomed. Nanotechnol. 4, 1000185 (2013)

    Google Scholar 

  74. G. Scherrer, M. Hofman, W. Smigaj, M. Kadic, T.M. Chang, X. Melique, D. Lippens, O. Vanbesien, B. Cluzel, F. de Fornel, S. Guenneau, B. Gralak, Phys. Rev. B 88, 115110 (2013)

    Article  Google Scholar 

  75. M. Hofman, D. Lippens, O. Vanbesien, Appl. Opt. 49, 5806 (2010)

    Article  Google Scholar 

  76. M. Enachi, I. Tiginyanu, V. Sprincean, V. Ursaki, Self-organized nucleation layer for the formation of ordered arrays of double-walled TiO2 nanotubes with temperature controlled inner diameter. Phys. Status Solidi RRL 4, 100–102 (2010)

    Article  Google Scholar 

  77. F. Wen, S. David, X. Checoury, M. El Kurdi, P. Boucaud, Opt. Express 16, 12278 (2008)

    Article  Google Scholar 

  78. L.R. Moore, M. Zborowski, L. Sun, J.J. Chalmers, J. Biochem. Biophys. Methods 37, 11 (1998)

    Article  Google Scholar 

  79. J. Escrig, P. Landeros, D. Altbir, E.E. Vogel, J. Magn. Magn. Mater. 310, 2448 (2007)

    Article  Google Scholar 

  80. S.B. Lee, D.T. Mitchell, L. Trofin, T.K. Nevanen, H. Sderlund, C.R. Martin, Science 296, 2198 (2002)

    Article  Google Scholar 

  81. C.R. Martin, P. Kohli, Nat. Rev. Drug Discov. 2, 29 (2003)

    Article  Google Scholar 

  82. H. Hillebrenner, F. Buyukserin, J.D. Stewar, C.R. Martin, Nanomedicine 1, 39 (2006)

    Article  Google Scholar 

  83. D.R. Baselt, G.L. Lee, M. Natesan, S.W. Metzger, P.E. Sheehan, R.J. Colton. Biosens. Bioelectron. 13, 731 (1998)

    Google Scholar 

  84. R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, P. Yang, Nano Lett. 5, 1633 (2005)

    Article  Google Scholar 

  85. P. Ball. Nanowire sensors pass drugs test. Nat. Nanozone News (2005)

    Google Scholar 

  86. F.J. Alenghat, B. Fabry, K.Y. Tsai, W.H. Goldmann, D.E. Ingber, Biochem. Biophys. Res. Commun. 277, 93 (2000)

    Article  Google Scholar 

  87. R.J. Mannix, S. Kumar, F. Cassiola, M. Montoya-Zavala, E. Feinstein, M. Prentiss, D.E. Ingber, Nature Nanotech. 3, 36 (2008)

    Article  Google Scholar 

  88. K. Bullis, Technol. Rev. 109, 16 (2006)

    Google Scholar 

  89. R.R. Llinas, K.D. Walton, M. Nakao, I. Hunter, P.A. Anquetil, Neuro-vascular central nervous recording/stimulating system: using nanotechnology probes. J. Nanoparticle Res. 7, 111–127 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veaceslav Ursaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tiginyanu, I., Ursaki, V., Monaico, E. (2016). Template Assisted Formation of Metal Nanotubes. In: Tiginyanu, I., Topala, P., Ursaki, V. (eds) Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30198-3_15

Download citation

Publish with us

Policies and ethics