Skip to main content

A Spatial Interaction Model with Spatially Structured Origin and Destination Effects

  • Chapter
  • First Online:
Spatial Econometric Interaction Modelling

Part of the book series: Advances in Spatial Science ((ADVSPATIAL))

Abstract

We introduce a Bayesian hierarchical regression model that extends the traditional least-squares regression model used to estimate gravity or spatial interaction relations involving origin-destination flows. Spatial interaction models attempt to explain variation in flows from n origin regions to n destination regions resulting in a sample of N = n 2 observations that reflect an n by n flow matrix converted to a vector. Explanatory variables typically include origin and destination characteristics as well as distance between each region and all other regions. Our extension introduces latent spatial effects parameters structured to follow a spatial autoregressive process. Individual effects parameters are included in the model to reflect latent or unobservable influences at work that are unique to each region treated as an origin and destination. That is, we estimate 2n individual effects parameters using the sample of N = n 2 observations. We illustrate the method using a sample of commodity flows between 18 Spanish regions during the 2002 period.

This paper has been previously published in the Journal of Geographical Systems. Special Issue on “Advances in the Statistical Modelling of Spatial Interaction Data”, Vol. 15, Number 3/July 2013, ©Springer-Verlag Berlin Heidelberg, pp. 265–289.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If one starts with the standard gravity model and applies a log-transformation, the resulting structural model takes the form of (9.1) (c.f., Eq. (6.4) in Sen and Smith (1995)).

  2. 2.

    For our conventional spatial contiguity matrix D which has zeros on the diagonal and row-sums of unity, the inverse is well defined for ρ < 1.

  3. 3.

    Of course for the destination effects parameters we have: \(\phi = (I_{n} -\rho _{d}D)^{-1}u_{d}\).

  4. 4.

    Row-sums of unity and zeros on the main diagonal.

  5. 5.

    Of course, one of the regions would need be eliminated from each of the matrices V, W to avoid have a perfect linear combination of dummy variables.

  6. 6.

    For clarity of presentation, we set forth conditional distributions involved in our sampling scheme in vector-matrix notation rather than the moment matrix form.

  7. 7.

    Weexclude the intraregional model from the data generating process as well as estimation procedure.

References

  • Ballester C, Calvó-Armengol A, Zenou Y (2006) Who’s who in networks. Wanted: the key player. Econometrica 74:1403–1417

    Google Scholar 

  • Banerjee S, Gelfand AE, Polasek W (2000) Geostatistical modelling for spatial interaction data with application to postal service performance. J Stat Plan Infer 90:87–105

    Article  Google Scholar 

  • Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Barrya RP, Paceb RK (1997) Kriging with large data sets using sparse matrix techniques. Commun Stat Simulat 26:619–629

    Article  Google Scholar 

  • Besag JE, Kooperberg CL (1995) On conditional and intrinsic autoregressions. Biometrika 82:733–746

    Google Scholar 

  • Besag JE, York JC, Mollie A (1991) Bayesian image restoration, with two applications in spatial statistics (with discussion). Ann Inst Stat Math 43:1–59

    Article  Google Scholar 

  • Bonacich PB (1987) Power and centrality: a family of measures. Am J Sociol 92:1170–1182

    Article  Google Scholar 

  • Cressie N (1995) Bayesian smoothing of rates in small geographic areas. J Reg Sci 35:659–673

    Article  Google Scholar 

  • Fischer MM, Scherngell T, Jansenberger E (2006) The geography of knowledge spillovers between high-technology firms in Europe: evidence from a spatial interaction modeling perspective. Geogr Anal 38(3):288–309

    Article  Google Scholar 

  • Gelfand AE, Sahu S, Carlin BP (1995) Efficient parameterizations for normal linear mixed models. Biometrika 82(3):479–488

    Article  Google Scholar 

  • Ghemawat P, Llano-Verduras C, Requena-Silventre F (2010) Competitiveness and interregional as well as and international trade: the case of Catalonia. Int J Ind Organ 28:415–422

    Article  Google Scholar 

  • LeSage JP, Pace RK (2008) Spatial econometric modeling of origin-destination flows. J Reg Sci 48(5):941–967

    Article  Google Scholar 

  • LeSage JP, Fischer MM, Scherngell T (2007) Knowledge Spillovers across Europe, evidence from a poisson spatial interaction model with spatial effects. Pap Reg Sci 86(3):393–421

    Article  Google Scholar 

  • Llano C, Esteban A, Pulido A, Pérez J (2010) Opening the interregional trade black box: the c-intereg database for the spanish economy (1995–2005). Int Reg Sci Rev 33:302–337

    Article  Google Scholar 

  • Oliver J, Luria J, Roca A, Pérez J (2003) In: lo Blanch T (ed) en La apertura exterior de las regiones en España: evolución del comercio interregional e internacional de las Comunidades Autónomas, 1995–1998. Institut dÉstudis Autonòmics, Generalitat de Catalunya, Valencia

    Google Scholar 

  • Sen A, Smith TE (1995) Gravity models of spatial interaction behavior. Springer, Heidelberg

    Book  Google Scholar 

  • Smith TE, LeSage JP (2004) A Bayesian probit model with spatial dependencies. In: LeSage JP, Pace RK (eds) Advances in econometrics: spatial and spatiotemporal econometrics, vol 18. Elsevier, Oxford, pp 127–160

    Chapter  Google Scholar 

  • Sun D, Tsutakawa RK, Speckman PL (1999) Posterior distribution of hierarchical models using car(1) distributions. Biometrika 86:341–350

    Article  Google Scholar 

  • Sun D, Tsutakawa RK, Kim H, He Z (2000) Bayesian analysis of mortality rates with disease maps. Stat Med 19:2015–2035

    Article  Google Scholar 

  • Tiefelsdorf M (2003) Misspecifications in interaction model distance decay relations: a spatial structure effect. J Geogr Syst 5:25–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. LeSage .

Editor information

Editors and Affiliations

Appendix: Details Regarding the MCMC Sampler

Appendix: Details Regarding the MCMC Sampler

First, we show that the conditional posterior for δ takes the multivariate form presented in the text.

$$\displaystyle\begin{array}{rcl} p(\delta \vert \theta,\phi,\rho _{o},\rho _{d},\sigma _{o}^{2},\sigma _{ d}^{2},\sigma _{\varepsilon }^{2})& \propto & \pi (\delta ) {}\\ & \cdot & \mbox{ exp}\{ - \frac{1} {2\sigma ^{2}\varepsilon }(y - Z\delta - V \theta - W\phi )^{{\prime}}(y - Z\delta - V \theta - W\phi )\} {}\\ & \propto & \mbox{ exp}\{ - \frac{1} {2\sigma ^{2}\varepsilon }(y - Z\delta - V \theta - W\phi )^{{\prime}}(y - Z\delta - V \theta - W\phi )\} {}\\ & \cdot & \mbox{ exp}\{ - \frac{1} {2\sigma ^{2}\varepsilon }\delta ^{{\prime}}T^{-1}\delta \} {}\\ & \propto & \mbox{ exp}\left (-\frac{1} {2\sigma ^{2}\varepsilon }[\delta '(Z^{{\prime}}Z + T^{-1})\delta - 2Z^{{\prime}}(y - V \theta - W\phi )'\delta ]\right ) {}\\ & \propto & \mbox{ exp}\left (-\frac{1} {2\sigma ^{2}\varepsilon }[\delta -\Sigma _{\delta }^{-1}\mu _{ \delta }]^{{\prime}}\Sigma _{\delta }[\delta -\Sigma _{\delta }^{-1}\mu _{ \delta }]\right ) {}\\ \end{array}$$

Where as reported in the text:

$$\displaystyle\begin{array}{rcl} \mu _{\delta }& =& \frac{1} {\sigma ^{2}\varepsilon } Z^{{\prime}}(y - V \theta - W\phi ) {}\\ \Sigma _{\delta }& =& \frac{1} {\sigma ^{2}\varepsilon } (Z^{{\prime}}Z + T^{-1}) {}\\ \end{array}$$

In this appendix we follow Smith and LeSage (2004) in deriving the conditional posterior for the spatial autoregressive effects parameters θ. They note that:

$$\displaystyle\begin{array}{rcl} p(\theta \vert \ldots )& \propto & \mbox{ exp}\left (-\frac{1} {2\sigma _{\varepsilon }^{2}}[V \theta - (y - Z\delta - W\phi )]^{{\prime}}[V \theta - (y - Z\delta - W\phi )]\right ) {}\\ & \cdot & \mbox{ exp}\left (- \frac{1} {2\sigma _{o}^{2}}\theta ^{{\prime}}B_{ o}^{{\prime}}B_{ o}\theta \right ) {}\\ & \propto & \mbox{ exp}\left (-\frac{1} {2\sigma _{\varepsilon }^{2}}[\theta ^{{\prime}}V ^{{\prime}}V \theta - 2(y - Z\delta - W\phi )^{{\prime}}V \theta +\theta ^{{\prime}}(\sigma _{ o}^{-2}B_{ o}^{{\prime}}B_{ o})\theta ]\right ) {}\\ & =& \mbox{ exp}\left (-\frac{1} {2\sigma _{\varepsilon }^{2}}[\theta ^{{\prime}}(\sigma _{ o}^{-2}B_{ o}^{{\prime}}B_{ o} + V ^{{\prime}}V )\theta - 2(y - Z\delta - W\phi )^{{\prime}}V \theta ]\right ) {}\\ \end{array}$$

from which it follows that:

$$\displaystyle\begin{array}{rcl} \theta \vert \delta,\phi,\rho _{o},\rho _{d},\sigma _{o}^{2},\sigma _{ d}^{2},\sigma _{\varepsilon }^{2},y,Z& \sim & N_{ n}[\Sigma _{\theta }^{-1}\mu _{ \theta },\Sigma _{\theta }^{-1}] \\ \mu _{\theta }& =& \sigma _{\varepsilon }^{-2}V ^{{\prime}}(y - Z\delta - W\phi ) \\ \Sigma _{\theta }& =& ( \frac{1} {\sigma _{o}^{2}}B_{o}^{{\prime}}B_{ o} + \frac{1} {\sigma _{\varepsilon }^{2}}V ^{{\prime}}V ){}\end{array}$$
(9.22)

The conditional posteriors for σ o 2, σ d 2:

$$\displaystyle\begin{array}{rcl} p(\sigma _{o}^{2}\vert \ldots )& \propto & \pi (\theta \vert \rho _{ o},\sigma _{o}^{2})\pi (\sigma _{ o}^{2}) {}\\ & \propto & (\sigma _{o}^{2})^{-n/2}\mbox{ exp}\left (- \frac{1} {2\sigma _{o}^{2}}\theta 'B_{o}'B_{o}\theta \right )(\sigma _{o}^{2})^{\nu _{1}+1}\mbox{ exp}\left (-\frac{\nu _{2}} {\sigma _{o}^{2}}\right ) {}\\ & \propto & (\sigma _{o}^{2})^{-(\frac{n} {2} +\nu _{1}+1)}\mbox{ exp}[-\theta 'B_{o}'B_{o}\theta + \frac{2\nu _{2}} {2\sigma _{o}^{2}}] {}\\ \end{array}$$

Which is proportional to the inverse gamma distribution reported in the text. A similar approach leads to p(σ d 2 | ), and the conditional posterior for σ ɛ 2:

$$\displaystyle\begin{array}{rcl} p(\sigma _{\varepsilon }^{2}\vert \ldots )& \propto & (\sigma _{\varepsilon }^{2})^{-n/2}\mbox{ exp}\left (-\frac{1} {2\sigma _{\varepsilon }^{2}}e'e\right )(\sigma _{\varepsilon }^{2})^{\nu _{1}+1}\mbox{ exp}\left (-\frac{\nu _{2}} {\sigma _{\varepsilon }^{2}}\right ) {}\\ & \propto & (\sigma _{\varepsilon }^{2})^{-(\frac{n} {2} +\nu _{1}+1)}\mbox{ exp}[-e'e + \frac{2\nu _{2}} {2\sigma _{\varepsilon }^{2}}] {}\\ e& =& y - Z\delta - V \theta - W\phi {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

LeSage, J.P., Llano, C. (2016). A Spatial Interaction Model with Spatially Structured Origin and Destination Effects. In: Patuelli, R., Arbia, G. (eds) Spatial Econometric Interaction Modelling. Advances in Spatial Science. Springer, Cham. https://doi.org/10.1007/978-3-319-30196-9_9

Download citation

Publish with us

Policies and ethics