Skip to main content

Bayesian Variable Selection in a Large Vector Autoregression for Origin-Destination Traffic Flow Modelling

  • Chapter
  • First Online:
Spatial Econometric Interaction Modelling

Part of the book series: Advances in Spatial Science ((ADVSPATIAL))

Abstract

In this paper, a traffic system is specified as a vector autoregressive (VAR) model. Specifically, traffic flow is defined as a function of temporally and/or spatially lagged traffic flows in the system. Particular attention is paid to the origin-destination nature of traffic, differentiating between the impacts of upstream neighbours and downstream neighbours, as well as accounting for contemporaneous correlations within the system. A Bayesian method will be proposed to estimate this traffic flow model. As the number of equations corresponds to the number of traffic flows (N) in the system, and the number of potential predictors grows geometrically with N, this is a large VAR model. To deal with the issue of ‘overfitting’, knowledge of the spatial configuration of the transportation network will be used to impose zero-restrictions on the coefficient matrices. Moreover, Bayesian variable selection method will be implemented to judiciously select only the significant predictors for each traffic flow of the system. Specification of the priors and the MCMC sampling procedure will be discussed at length. A simulation study will be presented. It will be shown that the estimated posterior distribution over the model space corresponds closely to the true model, and the estimated marginal posterior distribution of the effects vector B centres around their ‘true’ values and largely avoids the problems of ‘overfitting’. It will be argued that this Bayesian VAR approach offers a flexible and powerful alternative to modelling traffic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez JL, Ballabriga FC (1994) BVAR models in the context of cointegration: A Monte Carlo experiment. Bank of Spain Working Paper No. 9405 (Madrid)

    Google Scholar 

  • Berger JO, Pericchi L (2001) Objective Bayesian methods for model selection: introduction and comparison. In: Lahiri P (ed) Model selection. Institute of Mathematical Statistics, Hayward, pp 135–193

    Google Scholar 

  • Bolduc D, Dagenais MG, Gaudry MJ (1989) Spatially autocorrelated errors in origin-destination models: A new specification applied to urban travel demand in Winnipeg. Transp Res B 23(5):361–372

    Article  Google Scholar 

  • Bolduc D, Laferriere R, Santarossa G (1992) Spatial autoregressive error components in travel flow models. Reg Sci Urban Econ 22:371–385

    Article  Google Scholar 

  • Brown PJ, Vannucci M (1998) Multivariate Bayesian variable selection and prediction. J R Stat Soc Ser B 60(3):627–641

    Article  Google Scholar 

  • Chen H, Schmeiser B (1993) Monte Carlo estimation for guaranteed-coverage nonnormal tolerance intervals. Proceedings of the winter simulation conference, 509–515

    Google Scholar 

  • Cui W, George EI (2008) Empirical Bayes vs fully Bayes variable. J Stat Plan Inference 138:888–900

    Article  Google Scholar 

  • Deng M, Athanasopoulos G (2010) Modelling Australian Domestic and International Inbound Travel: a spatial-temporal approach. In: Tourism management, vol 32(5). Pergamon, Oxford, pp 1075–1084

    Google Scholar 

  • Ding Q, Wang X, Zhang X, Sun Z (2011) Forecasting traffic volume with space-time ARIMA model. Adv Mater Res 156–157:979–983

    Google Scholar 

  • Doan T, Litterman R, Sims C (1984) Forecasting and conditional projections using realist prior distributions. Econ Rev 3(1):1–100

    Article  Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88:881–889

    Article  Google Scholar 

  • Giacomini R, Granger, Clive WJ (2004) Aggregation of space-time processes. J Econ 118(1/2):7–26

    Google Scholar 

  • Griffith DA (2007) Spatial structure and spatial interaction: 25 years later. Rev Reg Stud 37(1):28–38

    Google Scholar 

  • Geweke J (1996) Variable selection and model comparison in regression. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 5: proceedings of the fifth Valencia international meeting. Oxford University Press, Oxford, pp 609–620

    Google Scholar 

  • Kadiyala KR, Karlsson S (1997) Numerical methods for estimation and inference in Bayesian VAR models. J Appl Econ 12:99–132

    Article  Google Scholar 

  • Kamarianakis Y, Kanas A, Prastacos P (2005) Modelling traffic volatility dynamics in an urban network. Transportation Research Record: Journal of the Transportation Research Board No. 1923. Transportation Research Board of the National Academies, Washington, pp 18–27

    Google Scholar 

  • Kamarianakis Y, Prastacos P (2005) Space-time modelling of traffic flow. Comput Geosci 31:119–133

    Article  Google Scholar 

  • Koop G, Korobilis D (2009) Bayesian multivariate time series methods for empirical macroeconomics. Found TrendsR Econ 3(4):267–358

    Article  Google Scholar 

  • Korobilis D (2013) VAR forecasting using Bayesian variable selection. J Appl Econ 28:204–230

    Article  Google Scholar 

  • Leonard T, Hsu J (1992) Bayesian inference for a covariance matrix. Ann Stat 20(4):1669–1696

    Article  Google Scholar 

  • LeSage JP, Fischer MM (2010) Spatial econometric methods for modelling origin–destination flows. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications. Springer, Berlin, pp 413–437

    Google Scholar 

  • LeSage JP, Krivelyova A (1999) A spatial prior for Bayesian vector autoregressive models. J Reg Sci 39(2):297–317

    Article  Google Scholar 

  • LeSage JP, Pan Z (1995) Using spatial contiguity as Bayesian prior information in regional forecasting models. Int Reg Sci Rev 18:33–53

    Article  Google Scholar 

  • LeSage JP, Pace RK (2008) Spatial econometric modelling of origin-destination flows. J Reg Sci 48(5):941–967

    Article  Google Scholar 

  • LeSage JP, Polasek W (2008) Incorporating transportation network structure in spatial econometric models of commodity flows. Spat Econ Anal 3(2):225–245

    Article  Google Scholar 

  • Liang F, Paulo R, Monila G, Clyde MA, Berger JO (2008) Mixture of g priors for Bayesian variable selection. J Am Stat Assoc 103(148):410–425

    Article  Google Scholar 

  • Litterman R (1980) Techniques for forecasting with vector autoregressions. PhD Dissertation, University of Minnesota, Minneapolis

    Google Scholar 

  • Litterman R (1986) Forecasting with Bayesian vector autoregressions: five years of experience. J Bus Econ Stat 4:25–38

    Google Scholar 

  • Pan Z, LeSage JP (1995) Using spatial contiguity as prior information in vector autoregressive models. Econ Lett 47:137–142

    Article  Google Scholar 

  • Pfeifer PE, Deutsch SJ (1980a) A three-stage iterative procedure for space–time modelling. Technometrics 22(1):35–47

    Article  Google Scholar 

  • Pfeifer PE, Deutsch SJ (1980b) Identification and interpretation of first-order space–time ARMA models. Technometrics 22(3):397–403

    Article  Google Scholar 

  • Pfeifer PE, Deutsch SJ (1981a) Variance of the sample-time autocorrelation function of contemporaneously correlated variables. SIAM J Appl Math Ser A 40(1):133–136

    Article  Google Scholar 

  • Pfeifer PE, Deutsch SJ (1981b) Seasonal space–time ARIMA modelling. Geogr Anal 13(2):117–133

    Article  Google Scholar 

  • Pfeifer PE, Bodily SE (1990) A test of space-time ARMA modelling and forecasting of hotel data. J Forecast 9(3):255–272

    Article  Google Scholar 

  • Porojan A (2001) Trade flows and spatial effects: the gravity model revisited. Open Econ Rev 12:265–280

    Article  Google Scholar 

  • Schmeiser BW, Chen MH (1991) On Hit-and-Run Monte Carlo sampling for evaluating multidimensional integrals. Technical Report, 91-39, Dept. Statistics, Purdue University

    Google Scholar 

  • Sims C (1972) Money, income and causality. Am Econ Rev 62(1):540–553

    Google Scholar 

  • Sims C (1980) Macroeconomics and reality. Econometrica 48:1–48

    Article  Google Scholar 

  • Smith M, Kohn R (1996) Nonparametric regression using Bayesian variable selection. J Econ 75:317–343

    Article  Google Scholar 

  • Yang R, Berger JO (1994) Estimation of a covariance matrix using the reference prior. Ann Stat 22(3):1195–1211

    Article  Google Scholar 

  • Zellner A (1971) An introduction to Bayesian inference in econometrics. Wiley, New York

    Google Scholar 

  • Zellner A (1986) On assessing prior distributions and Bayesian regression analysis with g-Prior distributions. In: Goel PK, Zellner A (eds) Bayesian inference and decision techniques: essays in Honor of Bruno de Finetti, North-Holland/Elsevier, Amsterdam, pp 233–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minfeng Deng .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Recall that the joint posterior is

$$ p\left(\mathrm{B},\Sigma, \gamma \Big|Y\right)\propto p\left(\mathrm{Y}\Big|\mathrm{B},\Sigma, \gamma \right)\cdot p\left({\mathrm{B}}_{\gamma}\Big|\Sigma, \gamma \right)\cdot p\left(\Sigma \right)\cdot p\left(\gamma \right) $$

To integrate out B

$$ \begin{array}{l}p\left(\Sigma, \gamma \Big|Y\right)={\displaystyle \underset{\mathrm{B}}{\int }}p\left(\mathrm{B},\Sigma, \gamma \Big|Y\right)d\mathrm{B}\\ {}\propto {\displaystyle \underset{\mathrm{B}}{\int }}p\left(\mathrm{Y}\Big|\mathrm{B},\Sigma, \gamma \right)\cdot p\left({\mathrm{B}}_{\gamma}\Big|\Sigma, \gamma \right)\cdot \left[\,p\left(\Sigma \right)\cdot p\left(\gamma \right)\right]d\mathrm{B}\\ {}\propto {\displaystyle \underset{\mathrm{B}}{\int }}p\left(\mathrm{Y}\Big|\mathrm{B},\Sigma, \gamma \right)\cdot p\left({\mathrm{B}}_{\gamma}\Big|\Sigma, \gamma \right)d\mathrm{B}\cdot p\left(\Sigma \right)\cdot p\left(\gamma \right)\\ {}\propto {\displaystyle \underset{\mathrm{B}}{\int }}{\left(2\pi \right)}^{-\frac{NT}{2}}\cdot {\left|\Sigma \right|}^{-\frac{T}{2}}\cdot exp\left\{-\frac{1}{2}{\left(Y-{\mathrm{X}}_{\gamma }{\mathrm{B}}_{\gamma}\right)}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}\left(Y-{\mathrm{X}}_{\gamma }{\mathrm{B}}_{\gamma}\right)\right\}\\ \quad\cdot{\left(2\pi \right)}^{-\frac{q_{\gamma }}{2}}\cdot {g}^{-\frac{q_{\gamma }}{2}}\cdot {\left|{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right|}^{\frac{1}{2}}\\[6pt] \quad\cdot exp\left\{-\frac{1}{2}{\mathrm{B}}_{\gamma}^{\prime}\left[\left(\frac{1}{g}\right){\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]{\mathrm{B}}_{\gamma}\right\}d\mathrm{B}\cdot \left[\,p\left(\Sigma \right)\cdot p\left(\gamma \right)\right]\end{array} $$

Complete the squares and divide and multiply

$$ \begin{array}{l}{\displaystyle \underset{\mathrm{B}}{\int }}p\left(\mathrm{B},\Sigma, \gamma \Big|Y\right)d\mathrm{B}\\ {}\propto {\left|\Sigma \right|}^{-\frac{T}{2}}\cdot exp\left\{-\frac{1}{2}{Y}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right\}\cdot {\displaystyle \underset{\mathrm{B}}{\int }}{\left(2\pi \right)}^{-\frac{q_{\gamma }}{2}}\cdot {\left|{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right|}^{\frac{1}{2}}\cdot {\left(\frac{g}{1+g}\right)}^{-\frac{q_{\gamma }}{2}}\\ {}\cdot exp\left\{-\frac{1}{2}\left[\left(\frac{1+g}{g}\right){\mathrm{B}}_{\gamma}^{\prime }{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma }{\mathrm{B}}_{\gamma }-2{\mathrm{B}}_{\gamma}^{\prime }{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right.\right.\\ \qquad\left.\left.{}+{Y}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma }{\left[\left(\frac{1+g}{g}\right){\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]}^{-1}{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right]\right\}d\mathrm{B}\\[9pt] {}\cdot exp\left\{\frac{1}{2}{Y}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma }{\left[\left(\frac{1+g}{g}\right){\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]}^{-1}{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right\}\\ {}\cdot {\left(1+g\right)}^{-\frac{q_{\gamma }}{2}}\cdot \left[\,p\left(\Sigma \right)\cdot p\left(\gamma \right)\right]\end{array} $$

Let

$$ {\widetilde{\mathrm{B}}}_{\gamma }=\left(\frac{g}{1+g}\right){\left[{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]}^{-1}{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y $$

and let

$$ \left({\mathrm{B}}_{\gamma }-{\widetilde{\mathrm{B}}}_{\gamma}\right) \sim N\left(0,\left(\frac{g}{1+g}\right){\left[{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]}^{-1}\right) $$

then

$$ \begin{array}{l}{\left({\mathrm{B}}_{\gamma }-{\widetilde{\mathrm{B}}}_{\gamma}\right)}^{\prime}\left[\left(\frac{1+g}{g}\right){\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]\left({\mathrm{B}}_{\gamma }-{\widetilde{\mathrm{B}}}_{\gamma}\right)\\ {}=\left[\left(\frac{1+g}{g}\right){\mathrm{B}}_{\gamma}^{\prime }{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma }{\mathrm{B}}_{\gamma }-2{\mathrm{B}}_{\gamma}^{\prime }{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right.\\ \qquad\left.{}+{Y}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma }{\left[\left(\frac{1+g}{g}\right){\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]}^{-1}{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right]\end{array} $$

is easily recognized as the kernel of the integral over B. Thus

$$ \begin{array}{l}p\left(\Sigma, \gamma \Big|Y\right)\\ {}\propto {\left|\Sigma \right|}^{-\frac{T}{2}}\cdot {\left(1+g\right)}^{-\frac{q_{\gamma }}{2}}\cdot exp\left\{-\frac{1}{2}{Y}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right\}\\ {} \cdot exp\left\{\frac{1}{2}{Y}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma }{\left[\left(\frac{1+g}{g}\right){\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]}^{-1}{\mathrm{X}}_{\gamma}^{\prime }{\left(\Sigma \otimes {I}_T\right)}^{-1}Y\right\}\\ {} \cdot \left[\,p\left(\Sigma \right)\cdot p\left(\gamma \right)\right]\end{array} $$

Finally, substitute the prior density of

$$ p\left(\Sigma \right)=iW\left(\overline{\Sigma},\ \alpha \right) = \frac{{\left|\overline{\Sigma}\right|}^{\frac{\alpha }{2}}}{{\left|\Sigma \right|}^{\frac{\alpha +N+1}{2}}\cdot {2}^{\frac{\alpha N}{2}}\cdot {\Gamma}_N\left(\frac{\alpha }{2}\right)}\cdot exp\left\{-\frac{1}{2}tr\left({\overline{\Sigma}\Sigma}^{-1}\right)\right\} $$

Into the above, Eq. (10.19)

$$ \begin{array}{l}p\left(\varSigma, \gamma \Big|Y\right)\propto {\left(1+g\right)}^{-\frac{q_{\gamma }}{2}}\cdot \left|\varSigma \right|{}^{-\frac{T+\alpha +N+1}{2}}\cdot exp\left\{-\frac{1}{2}tr\left(\overline{\varSigma}{\varSigma}^{-1}\right)\right\}\cdot \\ {} exp\left\{-\frac{1}{2}{Y}^{\prime}\left\{{\left(\varSigma \otimes {I}_T\right)}^{-1}-{\left(\varSigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma }{\left[\left(\frac{1+g}{g}\right){\mathrm{X}}_{\gamma}^{\prime }{\left(\varSigma \otimes {I}_T\right)}^{-1}{\mathrm{X}}_{\gamma}\right]}^{-1}\right.\right.\\ \qquad\left.\left.{}{\mathrm{X}}_{\gamma}^{\prime }{\left(\varSigma \otimes {I}_T\right)}^{-1}\phantom{\frac{a_X\frac{\int_a^x}{x}}{x_2^X}}\right\}Y\right\}\cdot p\left(\gamma \right)\end{array} $$

is obtained.

Appendix 2

Define \( {q}_{\gamma_i^0} \) as the size of γ excluding element i, one can write

$$ p\left({\gamma}_i=1\Big|{\gamma}_{j\ne i}\right)=\frac{p\left({q}_{\gamma_i^0}+1\right)}{p\left({q}_{\gamma_i^0}\right)+p\left({q}_{\gamma_i^0}+1\right)} $$

Using combinatorics, as defined for the same prior in Cui and George (2008), one could write

$$ \begin{array}{l}p\left({\gamma}_i=1\Big|{\gamma}_{j\ne i}\right)=\frac{p\left({q}_{\gamma_i^0}+1\right)}{p\left({q}_{\gamma_i^0}\right)+p\left({q}_{\gamma_i^0}+1\right)}\\ {}=\frac{\left(\frac{1}{q+1}\right){\left(\begin{array}{c}\hfill q\hfill \\ {}\hfill {q}_{\gamma_i^0}\hfill \end{array}\right)}^{-1}}{\left(\frac{1}{q+1}\right){\left(\begin{array}{c}\hfill q\hfill \\ {}\hfill {q}_{\gamma_i^0}\hfill \end{array}\right)}^{-1}+\left(\frac{1}{q+1}\right){\left(\begin{array}{c}\hfill q\hfill \\ {}\hfill {q}_{\gamma_i^0}+1\hfill \end{array}\right)}^{-1}}\end{array} $$

which, after some algebra, yields

$$ p\left({\gamma}_i=1\Big|{\gamma}_{j\ne i}\right)=\frac{q_{\gamma_i^0}+1}{q+1} $$

which implies

$$ p\left({\gamma}_i=0\Big|{\gamma}_{j\ne i}\right)=\frac{q-{q}_{\gamma_i^0}}{q+1} $$

It is straightforward to show that Eq. (10.19)

$$ \frac{p\left({\gamma}_i=1\Big|{\gamma}_{j\ne i}\right)}{p\left({\gamma}_i=0\Big|{\gamma}_{j\ne i}\right)}=\frac{q_{\gamma_i^0}+1}{q-{q}_{\gamma_i^0}} $$

holds.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deng, M. (2016). Bayesian Variable Selection in a Large Vector Autoregression for Origin-Destination Traffic Flow Modelling. In: Patuelli, R., Arbia, G. (eds) Spatial Econometric Interaction Modelling. Advances in Spatial Science. Springer, Cham. https://doi.org/10.1007/978-3-319-30196-9_10

Download citation

Publish with us

Policies and ethics