Skip to main content

An Investigation of the Use of Innovative Biology-Based Computational Intelligence in Ubiquitous Robotics Systems: Data Mining Perspective

  • Chapter
  • First Online:
Trends in Ambient Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 633))

  • 503 Accesses

Abstract

Sensor technologies are crucial in ambient assisted living system because they can observe, measure, and detect users’ daily activities, in the meanwhile issue warnings when parameters exceed particular thresholds. Despite their enormous supporting potential, the quantities of data generated from multiple sensor is huge (i.e., big data), because they involved everywhere, such as smart home, health-based wearable devices, and assistive robots. Generally speaking, big data can be defined as large pools of data which comes from digital pictures, videos, intelligent sensors, posts to social media sites, purchase transaction records, cell phone global positioning system signals, to name a few. During the past few years, there is a great interest both in the commercial and in the research communities around big data. Under these circumstances, data mining, whose main purpose is to extract value from mountains of datasets, is drawing a lot of people’s attention. To follow this trend, in this article, we intend to take an algorithmic point of view, i.e., applying intelligent algorithms to data, with an emphasis on the biology-based innovative computational intelligence (CI) methods. This work makes several contributions. First, it investigates a set of biology-based innovative CI algorithms which can enable a high throughput under extract from the insights of data. Second, it summarizes the core working principles of these algorithms systematically and highlights their preliminary applications in different areas of data mining. This will allow us to clearly pinpoint the intrinsic strengths of these novel algorithms, and also to define the potential further research directions. The findings of this chapter should provide useful insights into the current big data literature and be a good source for anyone who is interested in the application of CI approaches to big data and its corresponding fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manyika, J., et al.: Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute (2011)

    Google Scholar 

  2. Gobble, M.M.: Big data: the next big thing in innovation. Res. Technol. Manage. 56(1), 64–66 (2013)

    Article  Google Scholar 

  3. Katal, A., Wazid, M., Goudar, R.H.: Big data: issues, challenges, tools and good practices. In: 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 404–409. IEEE (2013)

    Google Scholar 

  4. Wu, X., et al.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)

    Article  Google Scholar 

  5. Nugent, C.D., et al.: Managing sensor data in ambient assisted living. J. Comput. Sci. Eng. 5(3), 237–245 (2011)

    Article  Google Scholar 

  6. Yu, B., Sen, R., Jeong, D.H.: An integrated framework for managing sensor data uncertainty using cloud computing. Inf. Syst. 38, 1252–1268 (2013)

    Article  Google Scholar 

  7. Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing: a review based on the kind of knowledge. Int. J. Intell. Manuf. 20, 501–521 (2009)

    Article  Google Scholar 

  8. Ahmed, S.R.: Applications of data mining in retail business. Inf. Technol.: Coding Comput. 2, 455–459 (2004)

    Google Scholar 

  9. Liao, S.-H., Chu, P.-H., Hsiao, P.-Y.: Data mining techniques and applications—a decade review from 2000 to 2011. Expert Syst. Appl. 39, 11303–11311 (2012)

    Article  Google Scholar 

  10. Liao, S.-H., Chen, Y.-J., Lin, Y.-T.: Mining customer knowledge to implement online shopping and home delivery for hypermarkets. Expert Syst. Appl. 38, 3982–3991 (2011)

    Article  Google Scholar 

  11. Ngai, E.W.T., Xiu, L., Chau, D.C.K.: Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst. Appl. 36, 2592–2602 (2009)

    Article  Google Scholar 

  12. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques. 3rd ed. 2012, 225 Wyman Street, Waltham, MA 02451, Morgan Kaufmann, Elsevier Inc., USA. ISBN 978-0-12-381479-1 (2012)

    Google Scholar 

  13. Xing, B., Gao, W.-J.: Innovative computational intelligence: a rough guide to 134 clever algorithms. Springer International Publishing Switzerland, Cham, Heidelberg, New York, Dordrecht, London (2014). ISBN 978-3-319-03403-4

    Book  MATH  Google Scholar 

  14. Elalfi, E., Haque, R., Elalami, M.E.: Extracting rules from trained neural network using GA for managing E-business. Appl. Soft. Comput. 4, 65–77 (2004)

    Article  Google Scholar 

  15. Xie, L., Mei, H.: The application of the ant colony decision rule algorithm on distributed data mining. Commun IIMA 7(4), 85–94 (2007)

    MathSciNet  Google Scholar 

  16. Sinha, A.N., Das, N., Sahoo, G.: Ant colony based hybrid optimization for data clustering. Kybernetes 36(2), 175–191 (2007)

    Article  MATH  Google Scholar 

  17. de Castro, L.N., Zuben, F.J.V.: aiNet: an artificial immune network for data analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S (ed.) Data mining: a heuristic approach, Idea Group Publishing, (2001)

    Google Scholar 

  18. Alatas, B., Akin, E.: Multi-objective rule mining using a chaotic particle swarm optimization algorithm. Knowl.-Based Syst. 22, 455–460 (2009)

    Article  Google Scholar 

  19. Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: a survey. IEEE Trans. Neural Netw. 13(1), 3–14 (2002)

    Article  Google Scholar 

  20. Romero, C. Ventura, S.: Educational data mining: a survey from 1995 to 2005. Expert Syst. Appl. 33, 135–146 (2007)

    Google Scholar 

  21. Harding, J.A., et al.: Data mining in manufacturing: a review. J. Manuf. Sci. Eng. 128, 969–976 (2006)

    Article  Google Scholar 

  22. Glaser, R.: Biophysics: an introduction, 2nd edn. Springer, Berlin, Heidelberg (2012). ISBN 978-3-642-25211-2

    Book  Google Scholar 

  23. Floreano, D., Mattiussi, C.: Bio-inspired artificial intelligence: theories, methods, and technologies. In: Arkin, R.C. (ed.) Intelligent Robotics and Autonomous Agents 2008, The MIT Press, Cambridge, Massachusetts. ISBN 978-0-262-06271-8 (2008)

    Google Scholar 

  24. Li, X-l: A new intelligent optimization method—artificial fish school algorithm (in Chinese with English abstract), in Institute of Systems Engineering. Zhejiang University, Hangzhou, P.R. China (2003)

    Google Scholar 

  25. Zhang, M., et al.: Evolving neural network classifiers and feature subset using artificial fish swarm. In: IEEE International Conference on Mechatronics and Automation 25–28 June, Luoyang, China, pp. 1598–1602. IEEE (2006)

    Google Scholar 

  26. Wang, C.-R., Zhou, C.-L., Ma J.-W.: An improved artificial fish-swarm algorithm and its application in feed-forward neural networks. In: Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 Aug, pp. 2890–2894. (2005)

    Google Scholar 

  27. Luo, Y., Zhang, J., Li, X.: The optimization of PID controller parameters based on artificial fish swarm algorithm. In: IEEE International Conference on Automation and Logistics, 18–21 Aug, Jinan, China, pp. 1058–1062. (2007)

    Google Scholar 

  28. Neshat, M., et al.: A review of artificial fish swarm optimization methods and applications. Int. J. Smart Sens. Intell. Syst. 5(1), 107–148 (2012)

    Google Scholar 

  29. Zhang, M., et al.: Mining classification rule with artificial fish swarm. In: 6th World Congress on Intelligent Control and Automation, 21–23 June, Dalian, China, pp. 5877–5881 (2006)

    Google Scholar 

  30. Wang, F., Xu, X., Zhang, J.: Application of artificial fish school and K-means clustering algorithms for stochastic GHP. In: Control and Decision Conference (CCDC), pp. 4280–4283. 2009

    Google Scholar 

  31. Neshat, M., et al.: A new hybrid algorithm based on artificial fishes swarm optimization and k-means for cluster analysis. Int. J. Comput. Sci. Issues 8(4), 251–259 (2011)

    Google Scholar 

  32. Sun, S., Zhang, J., Liu, H.: Key frame extraction based on artificial fish swarm algorithm and k-means. In: International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), 16–18 Dec, Changchun, China, pp. 1650–1653. IEEE (2011)

    Google Scholar 

  33. He, S., et al.: Fuzzy clustering with improved artificial fish swarm algorithm. In: International Joint Conference on Computational Sciences and Optimization (CSO), pp. 317–321. IEEE (2009)

    Google Scholar 

  34. Cheng, Y., Jiang, M., Yuan, D.: Novel clustering algorithms based on improved artificial fish swarm algorithm. In: Sixth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 141–145. IEEE (2009)

    Google Scholar 

  35. Zhu, W., et al.: Clustering algorithm based on fuzzy C-means and artificial fish swarm. Procedia Eng. 29, 3307–3311 (2012)

    Article  Google Scholar 

  36. Su, M.-C., Su, S.-Y., Zhao, Y.-X.: A swarm-inspired projection algorithm. Pattern Recogn. 42, 2764–2786 (2009)

    Article  MATH  Google Scholar 

  37. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  38. Yang, X.-S.: Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press, UK (2008). ISBN 978-1-905986-28-6

    Google Scholar 

  39. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T (ed.) SAGA 2009, LNCS 5792, pp. 169–178, Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  40. Babu, B.G., Kannan, M.: Lightning bugs. Resonance 7(9), 49–55 (2002)

    Article  Google Scholar 

  41. Jones, K.O., Boizanté, G.: Comparison of firefly algorithm optimisation, particle swarm optimisation and differential evolution. In: International Conference on Computer Systems and Technologies (CompSysTech), 16–17 June, Vienna, Austria, pp. 191–197. (2011)

    Google Scholar 

  42. Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm and Evol. Comput. 1, 164–171 (2011)

    Article  Google Scholar 

  43. Lancaster, R., et al.: Fireworks: principles and practice. Chemical Publishing Co., Inc., New York. ISBN 0-8206-0354-6 (1998)

    Google Scholar 

  44. Tan, Y. Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (ed.) ICSI 2010, Part I, LNCS 6145, pp. 355–364, Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  45. Janecek, A., Tan, Y.: Swarm intelligence for non-negative matrix factorization. Int. J. Swarm Intell. Res. 2(4), 12–34 (2011)

    Article  Google Scholar 

  46. Pei, Y., et al.: An empirical study on influence of approximation approaches on enhancing fireworks algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC 2012), Seoul, Korea, 14–17 Oct, pp. 1322–1327. IEEE (2012)

    Google Scholar 

  47. Hersovici, M., et al.: The shark-search algorithm. An application: tailored Web site mapping. Comput. Netw. ISDN Syst. 30, 317–326 (1998)

    Article  Google Scholar 

  48. Hillis, K., Petit, M., Jarrett, K.: Google and the culture of search. Taylor & Francis, 711 Third Avenue, New York, NY: Routledge (2013). ISBN 978-0-415-88300-9

    Google Scholar 

  49. Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through URL ordering. Comput. Netw. ISDN Syst. 30, 161–172 (1998)

    Article  Google Scholar 

  50. Jarvis, J.: What whould Google do?. HarperCollins Publishers Ltd., 55 Avenue Road, Suite 2900, Toronto, ON, M5R, 3L2, Canada (2009). ISBN 978-0-06-176472-1

    Google Scholar 

  51. Luo, F.-f., Chen, G.-l., Guo W.-z.: An improved fish-search algorithm for information retrieval. In: IEEE International Conference on Natural Language Processing and Knowledge Engineering (IEEE NLP-KE), pp. 523–528. IEEE (2005)

    Google Scholar 

  52. Chen, Z., et al.: An improved shark-search algorithm based on multi-information. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1–5. (2007)

    Google Scholar 

  53. Sun, T., et al.: Airplane route planning for plane-missile cooperation using improved fish-search algorithm. In: International Joint Conference on Artificial Intelligence (JCAI), pp. 853–856. (2009)

    Google Scholar 

  54. Bellaachia, A. Bari, A.: Flock by leader: a novel machine learning biologically inspired clustering algorithm. In: Tan, Y., Shi, Y., Ji, Z (ed.) ICSI 2012, Part I, LNCS 7332, pp. 117–126, Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  55. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  56. Cui, X., Gao, J., Potok, T.E.: A flocking based algorithm for document clustering analysis. J. Syst. Architect. 52, 505–515 (2006)

    Article  Google Scholar 

  57. Picarougne, F., et al.: A new approach of data clustering using a flock of agents. Evol. Comput. 15(3), 345–367 (2007)

    Article  Google Scholar 

  58. Luo, X., Li, S., Guan, X.: Flocking algorithm with multi-target tracking for multi-agent systems. Pattern Recogn. Lett. 31, 800–805 (2010)

    Article  Google Scholar 

  59. Pan, W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl.-Based Syst. 26, 69–74 (2012)

    Article  Google Scholar 

  60. Pan, W.-T.: Fruit fly optimization algorithm (in Chinese). Tsang Hai Book Publishing Co. ISBN 978-986-6184-70-3 (2011)

    Google Scholar 

  61. Krishnanand, K.N. Ghose, D:. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: IEEE Swarm Intelligence Symposium (SIS), IEEE, pp. 84–91 (2005)

    Google Scholar 

  62. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 3, 87–124 (2009)

    Article  Google Scholar 

  63. Huang, Z., Zhou, Y.: Using glowworm swarm optimization algorithm for clustering analysis. J. Convergence Inf. Technol. 6(2), 78–85 (2011)

    Article  Google Scholar 

  64. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  65. Geem, Z.W.: Particle-swarm harmony search for water network design. Eng. Optim. 41(4), 297–311 (2009)

    Article  Google Scholar 

  66. Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  67. Mahdavi, M., Abolhassani, H.: Harmony K-means algorithm for document clusterin. Data Min. Knowl. Disc. 18, 370–391 (2009)

    Article  MathSciNet  Google Scholar 

  68. Mahdavi, M., et al.: Novel meta-heuristic algorithms for clustering web documents. Appl. Math. Comput. 201, 441–451 (2008)

    MathSciNet  MATH  Google Scholar 

  69. Cobos, C., et al.: Web document clustering based on global-best harmony search, k-means, frequent term sets and Bayesian information crite. In: Proceedings of the IEEE World Congress on Computational lnteliigence (WCCI), 18–23 July 2010, CCIB, Barcelona, Spain, IEEE, pp. 4637–4644. 2010

    Google Scholar 

  70. Moeinzadeh, H., et al.: Combination of harmony search and linear discriminate analysis to improve classification. In: Proceedings of the Third Asia International Conference on Modelling & Simulation (AMS), IEEE, pp. 131–135 (2009)

    Google Scholar 

  71. Wang, X., Gao, X.-Z., Ovaska, S.J.: Fusion of clonal selection algorithm and harmony search method in optimization of fuzzy classification systems. Int. J. Bio-Inspired Comput. 1, 80–88 (2009)

    Article  Google Scholar 

  72. Venkatesh, S.K., Srikant, R., Madhu, R.M.: Feature selection & dominant feature selection for product reviews using meta-heuristic algorithms. In: Proceedings of the Compute’10, 22–23 Jan 2010, Bangalore, Karnataka, India, pp. 1–4. ACM (2010)

    Google Scholar 

  73. Ramos, C.C.O., et al.: A novel algorithm for feature selection using harmony search and its application for non-technical losses detection. Comput. Electr. Eng. 37, 886–894 (2011)

    Article  Google Scholar 

  74. Thammano, A., Moolwong, J.: A new computational intelligence technique based on human group formation. Expert Syst. Appl. 37, 1628–1634 (2010)

    Article  Google Scholar 

  75. Murase, H.: Finite element inverse analysis using a photosynthetic algorithm. Comput. Electron. Agric. 29, 115–123 (2000)

    Article  Google Scholar 

  76. Carpentier, R. (ed.) Photosynthesis research protocols. In: Walker, J.M., (ed.) 2nd edn. Methods in Molecular Biology, 2011, Springer Science+Business Media, LLC, ISBN 978-1-60671-924-6. Spring, New York, NY 10013, USA (2011)

    Google Scholar 

  77. Dubinsky, Z. (ed).: Photosynthesis. InTech, ISBN 978-953-51-1161-0: Janeza Trdine 9, 51000 Rijeka, Croatia (2013)

    Google Scholar 

  78. Alatas, B.: Photosynthetic algorithm approaches for bioinformatics. Expert Syst. Appl. 38, 10541–10546 (2011)

    Article  Google Scholar 

  79. Yang, X.-S.: Biology-derived algorithms in engineering optimization. In: Olarius, S., Zomaya, A. (ed.) Handbook of Bioinspired Algorithms and Applications, Chapter 32, pp. 585–596, CRC Press, LLC (2005)

    Google Scholar 

  80. Taherdangkoo, M., Yazdi, M., Bagheri, M.H.: A powerful and efficient evolutionary optimization algorithm based on stem cells algorithm for data clustering. Cent. Eur. J. Comput. Sci. 2(1), 1–13 (2012)

    Google Scholar 

  81. Taherdangkoo, M., Yazdi, M., Bagheri, M.H: Stem cells optimization algorithm, in LNBI 6840, pp. 394–403. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  82. Theraulaz, G., et al.: Task differentiation in polistes wasps colonies: a model for self-organizing groups of robots. In: First International Conference on Simulation of Adaptive Behavior, MIT Press, pp. 346–355 (1991)

    Google Scholar 

  83. Karsai, I., Wenzel, J.W.: Organization and regulation of nest construction behavior in Metapolybia wasps. J. Insect Behav. 13(1), 111–140 (2000)

    Article  Google Scholar 

  84. Lucchetta, P., et al.: Foraging and associative learning of visual signals in a parasitic wasp. Anim. Cogn. 11(3), 525–533 (2008)

    Article  Google Scholar 

  85. Fan, H., Zhong, Y.: A rough set approach to feature selection based on wasp swarm optimization. J. Comput. Inf. Syst. 8(3), 1037–1045 (2012)

    MathSciNet  Google Scholar 

  86. Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. Auton. Agent. Multi-Agent Syst. 8, 237–266 (2004)

    Article  Google Scholar 

  87. Runkler, T.A.: Wasp swarm optimization of the c-means clustering model. Int. J. Intell. Syst. 23, 269–285 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xing, B. (2016). An Investigation of the Use of Innovative Biology-Based Computational Intelligence in Ubiquitous Robotics Systems: Data Mining Perspective. In: Ravulakollu, K., Khan, M., Abraham, A. (eds) Trends in Ambient Intelligent Systems. Studies in Computational Intelligence, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-319-30184-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30184-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30182-2

  • Online ISBN: 978-3-319-30184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics