Skip to main content

Smart Robot Control via Novel Computational Intelligence Methods for Ambient Assisted Living

  • Chapter
  • First Online:
Trends in Ambient Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 633))

Abstract

In recent years, we have witnessed a rapid surge in ambient assisted living (AAL) technologies due to a rapidly aging society. The aging population, the increasing cost of formal health care, the caregiver burden, and the importance that the individuals place on living independently, all motivate development of innovative-assisted living technologies for safe and independent aging. Among all areas, the development of assistive robots with potential application to health and elderly care is drawing a lot attention from both industry and academia. Several such prototypes (e.g., wearable assisted-walking device designed by Honda, and personal transport assistance robot designed by Toyota) have been made. These robots are inevitably supported by various algorithms and computational techniques. In this work, we provide an overview of applying emerging CI (i.e., non-conventional CI) approaches to various smart robot control scenarios which, from the author’s viewpoint, have a great influence on various ambient assisted living (AAL) robot related activities, such as location identification, manipulation, communication, vision, learning, and docking capabilities. The innovative CI methods covered in this chapter include bacteria foraging optimization (BFO), bees algorithm (BA), glowworm swarm optimization (GSO), grey wolf optimizer (GWO), electromagnetism-like mechanism (EM), intelligent water drops (IWD), and gravitational search algorithm (GSA). The findings of this work can provide a good source for someone who is interested in the research filed of AAL robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dario, P., et al.: Robotics for medical application. In: Robotics & Automation Magazine (1996), pp. 44–56

    Google Scholar 

  2. Dario, P., et al.: MOVAID: a personal robot in everyday life of disabled and elderly people. Technol. Disabil. 10, 77–93 (1999)

    Google Scholar 

  3. Dario, P., Guglielmelli, E., Laschi, C.: Humanoids and personal robots: design and experiments. J. Rob. Syst. 18(12), 673–690 (2001)

    Article  MATH  Google Scholar 

  4. JinYoo, S.: Adaptive neural tracking and obstacle avoidance of uncertain mobile robots with unknown skidding and slipping. Inf. Sci. 238, 176–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jaradat, M.A.K., Al-Rousan, M., Quadan, L.: Reinforcement based mobile robot navigation in dynamic environment. Rob. Comput. Integr. Manuf. 27, 135–149 (2011)

    Article  Google Scholar 

  6. Navarro-Guerrero, N., et al.: Real-world reinforcement learning for autonomous humanoid robot docking. Rob. Auton. Syst. 60, 1400–1407 (2012)

    Article  Google Scholar 

  7. Maravall, D., Lope, J.D., Domínguez, R.: Coordination of communication in robot teams by reinforcement learning. Rob. Auton. Syst. 61, 661–666 (2013)

    Google Scholar 

  8. Herrero-Pérez, D., et al.: Fuzzy uncertainty modeling for grid based localization of mobile robots. Int. J. Approximate Reasoning 51, 912–932 (2010)

    Article  Google Scholar 

  9. Miljkovic, Z., et al.: Neural network reinforcement learning for visual control of robot manipulators. Expert Syst. Appl. 40, 1721–1736 (2013)

    Article  Google Scholar 

  10. Jolly, K.G., Kumar, R.S., Vijayakumar, R.: Intelligent task planning and action selection of a mobile robot in a multi-agent system through a fuzzy neural network approach. Eng. Appl. Artif. Intell. 23, 923–933 (2010)

    Article  Google Scholar 

  11. Motlagh, O., et al.: An expert fuzzy cognitive map for reactive navigation of mobile robots. Fuzzy Sets Syst. 201, 105–121 (2012)

    Article  MathSciNet  Google Scholar 

  12. Al-Dabbagh, R.D., et al.: System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm. Adv. Eng. Softw. 78, 60–66 (2014)

    Article  Google Scholar 

  13. Kondo, T., Ito, K.: A reinforcement learning with evolutionary state recruitment strategy for autonomous mobile robots control. Rob. Auton. Syst. 46, 111–124 (2004)

    Article  Google Scholar 

  14. Son, J.-H., Choi, Y.-C., Ahn, H.-S.: Bio-insect and artificial robot interaction using cooperative reinforcement learning. Appl. Soft Comput. 18(6), 1127–1141 (2014)

    Article  Google Scholar 

  15. Wu, Y.-H., et al.: Designing an assistive robot for older adults: the ROBADOM project. IRBM 34, 119–123 (2013)

    Article  Google Scholar 

  16. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17(3), 579–590 (2013)

    Article  Google Scholar 

  17. Feil-Seifer, D., Matarić, M.J.: Defining socially assistive robotics. In: Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, 28 June–1 July 2005, Chicago, IL, USA

    Google Scholar 

  18. Graf, B.: Care-O-bot (2014). http://www.care-o-bot.de/en/care-o-bot-3.html. Accessed on 30 July 2015

  19. Graf, B., Hans, M., Schraft, R.D.: Care-O-bot II: development of a next generation robotic home assistant. Auton. Robots 16, 193–205 (2004)

    Article  Google Scholar 

  20. Graf, B., Parlitz, C., Hägele, M.: Robotic home assistant Care-O-bot 3 product vision and innovation platform. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part II, (HCII 2009), LNCS 5611. Springer, Berlin (2009), pp. 312–320

    Google Scholar 

  21. RIKEN-TRI Collaboration Center: RIBA (2015) http://rtc.nagoya.riken.jp/RIBA/index-e.html. Accessed on 30 July 2015

  22. Mukai, T., et al.: Development of a nursing-care assistant robot RIBA that can lift a human in Its arms. In: The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18–22 Oct 2010, Taipei, Taiwan (2010)

    Google Scholar 

  23. Kuindersma, S.R., et al.: Dexterous mobility with the uBot-5 mobile manipulator. In: International Conference on Advanced Robotics (ICAR), June 2009 (2009), pp. 1–7

    Google Scholar 

  24. Xu, J., et al.: Enhanced bimanual manipulation assistance with the personal mobility and manipulation appliance (PerMMA). In: The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 18–22 Oct 2010, Taipei, Taiwan (2010)

    Google Scholar 

  25. Wang, H., et al.: The personal mobility and manipulation appliance (PerMMA): a robotic wheelchair with advanced mobility and manipulation. In: The 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, 28 Aug–1 Sept 2012 (2012)

    Google Scholar 

  26. Cooper, R.A., et al.: Personal mobility and manipulation appliance-design, development, and initial testing. Proc. IEEE 100(8), 2505–2511 (2012)

    Article  Google Scholar 

  27. Sato, M., Sugiyama, A., Ohnaka, S.I.: Auditory system in a personal robot, PaPeRo. In: 2006 Digest of technical Papers International Conference on Consumer Electronics (ICCE 06), 7–11 Jan 2006 (2006), pp. 19–20

    Google Scholar 

  28. Sato, M., et al.: A single-chip speech dialogue module and its evaluation on a personal robot. PaPeRo-mini in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 19–24 April 2009, Taipei, Taiwan (2009), pp. 3697–3700

    Google Scholar 

  29. Fujiwara, N., Hagiwara, Y., Choi, Y.: Development of a learning support system with PaPeRo. In: The 12th International Conference on Control, Automation and Systems, 17–21 Oct 2012, Jeju Island, Korea (2012), pp. 1912–1915

    Google Scholar 

  30. Hosoda, Y., et al.: Collision-avoidance algorithm for human-symbiotic robot. In: International Conference on Control, Automation and Systems 2010, 27–30 Oct 2010, Gyeonggi-do, Korea (2010), pp. 557–561

    Google Scholar 

  31. Hosoda, Y., et al.: Basic design of human-symbiotic robot EMIEW, in Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9–15 Oct 2006, Beijing, China (2006), pp. 5079–5084

    Google Scholar 

  32. HITACHI. Robotics: EMIEW 2 (2014). http://www.hitachi.com/rd/portal/research/robotics/emiew2_01.html. Accessed on 30 Jul 2015

  33. Falconer, J.: HOSPI-R drug delivery robot frees nurses to do more important work (2013). http://www.gizmag.com/panasonic-hospi-r-delivery-robot/29565/. Accessed on 30 July 2015

  34. Murai, R., et al.: A novel visible light communication system for enhanced control of autonomous delivery robots in a hospital. In: IEEE/SICE International Symposium on System Integration (SII), 16–18 Dec 2012, Kyushu University, Fukuoka, Japan (2012), pp. 510–516

    Google Scholar 

  35. Marwala, T., Lagazio, M.: Militarized conflict modeling using computational intelligence. Springer, London, UK (2011). ISBN 978-0-85729-789-1

    Google Scholar 

  36. Xing, B., Gao, W.-J.: Innovative computational intelligence: a rough guide to 134 clever algorithms. Springer International Publishing Switzerland, Cham (2014). ISBN 978-3-319-03403-4

    Book  MATH  Google Scholar 

  37. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Manage. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  38. Boussaïd, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. El-Abd, M.: Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf. Sci. 182, 243–263 (2012)

    Article  MathSciNet  Google Scholar 

  40. Tang, W.J., Wu, Q.H.: Biologically inspired optimization: a review. Trans. Inst. Meas. Contr. 31(6), 495–515 (2009)

    Article  Google Scholar 

  41. Hossain, M.A., Ferdous, I.: Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Rob. Auton. Syst. 64, 137–141 (2015)

    Article  Google Scholar 

  42. Pham, D.T., et al.: The bees algorithm—A novel tool for complex optimisation problems. In: Second International Virtual Conference on Intelligent Production Machines and Systems (IPROMS). Elsevier, Oxford (2006), pp. 454–459

    Google Scholar 

  43. Xu, S., et al.: Bio-inspired binary bees algorithm for a two-level distribution optimisation problem. J. Bionic Eng. 7, 161–167 (2010)

    Article  Google Scholar 

  44. Krishnanand, K.N., Ghose, D.: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions. Swarm Intell. 3, 87–124 (2009)

    Article  Google Scholar 

  45. Krishnanand, K.N., Ghose, D.: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: IEEE Swarm Intelligence Symposium (SIS). IEEE (2005), pp. 84–91

    Google Scholar 

  46. Krishnanand, K.N., et al.: Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources. In: IEEE International Conference on Robotics and Automation (ICRA), May, Orlando, Florida, USA. IEEE (2006), pp. 958–963

    Google Scholar 

  47. Birbil, Şİ., Fang, S.-C.: An electromagnetism-like mechanism for global optimization. J. Global Optim. 25, 263–282 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, Y., et al.: A model predictive control strategy for path-tracking of autonomous mobile robot using electromagnetism-like mechanism. In: International Conference on Electrical and Control Engineering (ICECE). IEEE (2010), pp. 96–100

    Google Scholar 

  49. Shah-Hosseini, H.: Problem solving by intelligent water drops. In: IEEE Congress on Evolutionary Computation (CEC), 25–28 Sept 2007. IEEE (2007), pp. 3226–3231

    Google Scholar 

  50. Shah-Hosseini, H.: Intelligent water drops algorithm: a new optimization method for solving the multiple knapsack problem. Int. J. Intell. Comput. Cybern. 1(2), 193–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Duan, H., Liu, S., Wu, J.: Novel intelligent water drops optimization approach to single UCAV smooth trajectory planning. Aerosp. Sci. Technol. 13, 442–449 (2009)

    Article  Google Scholar 

  52. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  53. Seljanko, F.: Hexapod walking robot gait generation using genetic-gravitational hybrid algorithm. In: 15th International Conference on Advanced Robotics, 20–23 June 2011, Tallinn University of Technology, Tallinn, Estonia. IEEE (2011), pp. 253–258

    Google Scholar 

  54. Robinson, H., MacDonald, B., Broadbent, E.: The role of healthcare robots for older people at home: a review. Int. J. Social Robot. 6(4), 575–591 (2014)

    Article  Google Scholar 

  55. Broadbent, E., et al.: Attitudes towards health-care robots in a retirement village. Australas. J. Ageing 31(2), 115–120 (2012)

    Article  Google Scholar 

  56. Andrade, A.O., et al.: Bridging the gap between robotic technology and health care. Biomed. Signal Process. Control 10, 65–78 (2014)

    Article  Google Scholar 

  57. Harrefors, C., Axelsson, K., Sävenstedt, S.: Using assistive technology services at differing levels of care: healthy older couples’ perceptions. J. Adv. Nurs. 66(7), 1523–1532 (2010)

    Article  Google Scholar 

  58. Broadbent, E., Stafford, R., MacDonald, B.: Acceptance of healthcare robots for the older population: review and future directions. Int. J. Social Robot. 1, 319–330 (2009)

    Article  Google Scholar 

  59. Potter, M.A., Meeden, L.A., Schultz, A.C.: Heterogeneity in the coevolved behaviors of mobile robots: the emergence of specialists. In: Proceedings of the 7th International Conference on Artificial Intelligence (2011), pp. 1337–1343

    Google Scholar 

  60. Parker, L.E.: ALLIANCE: an architecture for fault tolerant, cooperative control of heterogeneous mobile robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (1994), pp. 776–783

    Google Scholar 

  61. Haque, M.A.: Biologically inspired heterogeneous multi-agent systems. In: School of Electrical and Computer Engineering, Georgia Institute of Technology (2010)

    Google Scholar 

  62. Wurm, K.M., et al.: Coordinating heterogeneous teams of robots using temporal symbolic planning. Auton. Robots 34, 277–294 (2013)

    Article  Google Scholar 

  63. Baca, J., Ferre, M., Aracil, R.: A heterogeneous modular robotic design for fast response to a diversity of tasks. Rob. Auton. Syst. 60, 522–531 (2012)

    Article  Google Scholar 

  64. Lope, J.D., Maravall, D., Quiñonez, Y.: Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-robot systems. Robot. Auton. Syst. 61, 714–720 (2013)

    Google Scholar 

  65. Brunete, A., et al.: A behaviour-based control architecture for heterogeneous modular, multi-configurable, chained micro-robots. Rob. Auton. Syst. 60, 1607–1624 (2012)

    Article  Google Scholar 

  66. Stone, P.: Intelligent autonomous robotics: a robot soccer case study. Morgan & Claypool, (2007). www.morganclaypool.com. ISBN 1598291262

  67. Lauer, M., et al.: Cognitive concepts in autonomous soccer playing robots. Cogn. Syst. Res. 11, 287–309 (2010)

    Article  Google Scholar 

  68. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. In: IEEE Robotics & Automation (2013), pp. 60–71

    Google Scholar 

  69. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004). ISBN 0-262-04219-3

    Google Scholar 

  70. Deneubourg, J.L., et al.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings of 1st Conference on Simulation of Adaptive Behavior (1991)

    Google Scholar 

  71. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Rob. Auton. Syst. 30, 85–101 (2000)

    Article  Google Scholar 

  72. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics. Artif. Life 5, 173–202 (1999)

    Article  Google Scholar 

  73. Caro, G.D.: A Society of Ant-like Agents for Adaptive Routing in Networks. Universite Libre de Bruxelles, Brussels, Belgium (2002)

    Google Scholar 

  74. Dorigo, M.: Swarms of self-assembling robots. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds) EEMMAS 2007, LNAI 5049. Springer, Berlin (2008), pp. 1–2

    Google Scholar 

  75. Dorigo, M., et al.: SWARM-BOT: design and implementation of colonies of self-assembling robots. In: Yen, G.Y., Fogel, D.B. (eds) Computational Intelligence: Principles and Practice. IEEE Computational Intelligence Society, New York (2006), pp. 103–135

    Google Scholar 

  76. Ferrante, E.: A Control Architecture for a Heterogeneous Swarm of Robots: The Design of a Modular Behavior-Based Architecture. Universite Libre de Bruxelles (2009)

    Google Scholar 

  77. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xing, B. (2016). Smart Robot Control via Novel Computational Intelligence Methods for Ambient Assisted Living. In: Ravulakollu, K., Khan, M., Abraham, A. (eds) Trends in Ambient Intelligent Systems. Studies in Computational Intelligence, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-319-30184-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30184-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30182-2

  • Online ISBN: 978-3-319-30184-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics