Advertisement

Interventions in Complex Urban Systems: How to Enable Modeling to Account for Disruptive Innovation

  • Justyna KarakiewiczEmail author
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

This chapter will illustrate how Adaptive Cycles and Complex Adaptive Systems (CAS) can be applied to allow us to gain better understanding of our cities and how our ability to innovate can allows us to introduce disturbance into specific urban systems that could promote more resilient and more sustainable futures.

Keywords

Urban System Master Plan Complex Adaptive System Urban Form Urban Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alberti, M., Marzluff, J.M., Schulenburger, E., Bradley, G., Ryan, C., Zumbrunnen, C.: Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. Bioscience 53(12), 1169–1179 (2003)CrossRefGoogle Scholar
  2. Allen, C.R., Holling, C.: Novelty, adaptive capacity, and resilience. Ecol. Soc. 15(3), 24 (2010). http://www.ecologyandsociety.org/vol15/iss3/art24/ (online)
  3. Allen, P.M.: Models, knowledge creation and their limits. A paper presented at the NEXSUS Workshop on The Limits to Knowledge, Central European University, Budapest, 23–24 June 2001Google Scholar
  4. Allen, P.M., Torrens, P.M.: Knowledge and complexity. Futures 37(7), 581–584 (2005)CrossRefGoogle Scholar
  5. Bacon, E.: Design of Cities. Penguin, London (1976)Google Scholar
  6. Batty, M., Torrens, P.M.: Modelling complexity: The limits to predictions. 12ème Colloque Européen de Géographie Théorique et Quantitative, St-Valéry-en-Caux, France, 7–11 Septembre 2001. http://cybergeo.revues.org/1035
  7. de Guess, A.: Planning as learning. Harv. Bus. Rev. 74 (1988)Google Scholar
  8. Dooley, K.J.: A complex adaptive system model of organization change. Nonlinear Dyn. Psychol. Life Sci. 1(1), 69–97 (1997)Google Scholar
  9. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: IEEE Symposium on Research in Security and Privacy. IEEE Computer Society Press, Los Alamitos, CA (1994)Google Scholar
  10. Gell-Mann, M.: Complex adaptive systems. In: Cowan, G., Pines, D., Meltzer, D. (eds.) Complexity: Metaphors, Models and Reality. Proceedings of SFI Studies in the Sciences of Complexity, vol. XIX. Addison-Wesley (1994)Google Scholar
  11. Gunderson, L.H., Holling, C.S. (eds.): Panarchy: Understanding Transformations in Human and Natural Systems. Island Press, Washington, DC (2002)Google Scholar
  12. Hensel, M., Menges, A.: Morpho-ecologies. AA Publications, London (2006)Google Scholar
  13. Holland, J.: Hidden Order: How Adaptation Builds Complexity. Perseus, Cambridge, MA (1995)Google Scholar
  14. Holland, J.: Signals and Boundaries: Building Blocks for Complex Adaptive Systems. MIT Press, Cambridge, MA (2012)Google Scholar
  15. Holling, C.S.: Resilience of ecosystems; local surprise and global change. In: Clark, W.C., Munn, R.E. (eds.) Sustainable Development of the Biosphere, pp. 292–317. Cambridge University Press, Cambridge (1986)Google Scholar
  16. Holling, C.S.: Surprise for science, resilience for ecosystem, and incentives for people. Ecol. Appl. 6, 733–735 (1996)CrossRefGoogle Scholar
  17. Hughes, J.D.: An environmental History of the World: Humankind’s Changing Role in the Community of Life. Routledge, New York (2009)Google Scholar
  18. Karakiewicz, J.: Data driven urban design. In: Disruption, modeling and construction: changing dialogues: Proceedings of the XIV Congress of the Iberoamerican Society of Digital Graphics, SIGraDi. Universidad de los Andes, Bogotá, Colombia, pp 372–375 (2010)Google Scholar
  19. Kastelle, T.: There is no innovation without uncertainty. http://timkastelle.org/blog/2013/03/theres-no-innovation-without-uncertainty/ (2013)
  20. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004)CrossRefGoogle Scholar
  21. Lansing, S.J.: Complex adaptive systems. Annu. Rev. Anthropol. 32, 183–204. http://www.annualreviews.org/doi/abs/10.1146/annurev.anthro.32.061002.093440 (2003)Google Scholar
  22. Martin, R., Sunley, P.: On the notion of regional economic resilience: conceptualisation and explanation. J. Econ. Geogr. (2013)Google Scholar
  23. McBrien, R.P.: Lives of the Pope. HarperCollins, London (2000)Google Scholar
  24. McDonnell, M., Pickett, S. (eds.): Human as Components of Ecosystems: The Ecology of Subtle Human Effects and Populated Areas. Springer, New York (1993)Google Scholar
  25. Portugali, J.: Self-organization and the City. Springer, Berlin (2000)CrossRefzbMATHGoogle Scholar
  26. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioural model. In: SIGGRAPH ’87 Proceedings of the 14th annual conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)Google Scholar
  27. Salamon, T.: Design of Agent-Based Models. Bruckner Publishing, Repin (2011)Google Scholar
  28. Schnabel, M., Karakiewicz, J.: Rethinking parameters in urban design. Int. J. Archit. Comput. 5(1), 84–98 (2007)CrossRefGoogle Scholar
  29. Stirling, D.: Learning and complex adaptive systems. Aichi Univ. Engl. Educ. Res. J. 30, 183–226. http://www.learndev.org/dl/Stirling_Learning-CAS.pdf (2013)
  30. Walker, B., Gunderson, L., Kinzing, A., Folke, C., Carpenter, S., Schultz, L.: A handful of heuristics and some propositions for understanding resilience in social-ecological systems. Ecol. Soc. 11(1), 13 (2006). http://www.ecologyandsociety.org/vol11/iss1/art13/
  31. Walker, B., Salt, D.: Resilience Thinking: Sustaining Ecosystems and People in a Changing World. Island Press, Washington, DC. (2006)Google Scholar
  32. Wooldridge, M.: An Introduction to Multi-Agent Systems. Wiley, London (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of MelbourneMelbourneAustralia

Personalised recommendations