Bypassing Data Unavailability in Urban Systems Modeling

  • Najd OuhajjouEmail author
  • Wolfgang Loibl
  • Ernst Gebetsroither-Geringer
  • Stefan Fenz
  • A. Min Tjoa
Part of the Understanding Complex Systems book series (UCS)


Modelers of urban systems are confronted with an enormous complexity, plurality, and multidisciplinarity of the components these urban systems are made of. Despite the existence of a large variety of modeling approaches and techniques—primarily trying to simplify the apparent complexity—data unavailability presents a common factor for partial failure or unsatisfactory results. Improving the situation can only be achieved by increasing the availability of data to feed the model. The present article describes the combination of different modeling techniques, specifically semantic modeling and the use of ontologies to overcome data unavailability when modeling complex urban systems. The first part of the article explains how to describe the semantics of urban systems; the second part describes how to use these semantics to integrate different data sources and heterogeneous models. Thus, this article presents a possibility to model a complex urban system by getting the most out of the available data. The approach is tested through its application in modeling an urban system for energy planning support purposes.


Complex urban systems Data unavailability Semantic modeling Planning support systems Ontologies 


  1. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956)Google Scholar
  2. Batty, M.: Urban modeling. In: International Encyclopedia of Human Geography. Elsevier, Oxford (2009)Google Scholar
  3. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: exploring and analyzing linked data on the semantic web (2006)Google Scholar
  4. Blomqvist, E.: The use of Semantic Web technologies for decision support-a survey. Semant. Web 5, 177–201 (2014)Google Scholar
  5. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. In: Proceedings on Ontological Engineering AAAI-97 Spring Symposium Series, pp. 33–40 (1997)Google Scholar
  6. Giaretta, P., Guarino, N.: Ontologies and knowledge bases towards a terminological clarification. Very Large Knowledge Bases: Knowledge Building & Knowledge Sharing 25 (1995)Google Scholar
  7. Knoblock, C.A., Szekely, P., Ambite, J.L., Goel, A., Gupta, S., Lerman, K., Muslea, M., Taheriyan, M., Mallick, P.: Semi-automatically mapping structured sources into the semantic web. In: The Semantic Web: Research and Applications, pp. 375–390. Springer (2012)Google Scholar
  8. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview. W3C Recommendation 10, 2004 (2004)Google Scholar
  9. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33, 65–70 (2004). doi: 10.1145/1041410.1041421 CrossRefGoogle Scholar
  10. OpenLink Software: Virtuoso Universal Server. (2014). Accessed 20 Feb 2014 (WWW Document)
  11. Ouhajjou, N., Loibl, W., Anjomshoaa, A., Fenz, S., Tjoa, A.M.: Ontology-based Urban energy planning support: Building-integrated solar PV. In: eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2014. CRC Press, Boca Raton (2014)Google Scholar
  12. Ouhajjou, N., Palensky, P., Stifter, M., Page, J., Fenz, S., Tjoa, A.M.: A modular methodology for the development of urban energy planning support software. Presented at the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, pp. 7558–7563 (2013). doi: 10.1109/IECON.2013.6700392
  13. Prud’Hommeaux, E., Seaborne, A., et al.: SPARQL query language for RDF. W3C Recommendation 15 (2008)Google Scholar
  14. Shadbolt, N., O’Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., Hall, W., et al.: Linked open government data: Lessons from data. gov. uk. IEEE Intell. Syst. 27, 16–24 (2012)Google Scholar
  15. Walloth, C., Gurr, J.M., Schmidt, J.A. (eds.): Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling, Understanding Complex Systems. Springer International Publishing, Cham (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Najd Ouhajjou
    • 1
    Email author
  • Wolfgang Loibl
    • 1
  • Ernst Gebetsroither-Geringer
    • 1
  • Stefan Fenz
    • 2
  • A. Min Tjoa
    • 2
  1. 1.Energy DepartmentAustrian Institute of TechnologyViennaAustria
  2. 2.Institute of Software Technology and Interactive SystemsVienna University of TechnologyViennaAustria

Personalised recommendations