Skip to main content

Transmission in Elastic Optical Networks

  • Chapter
  • First Online:
Elastic Optical Networks

Part of the book series: Optical Networks ((OPNW))

Abstract

Analog-to-Digital Converter

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Cassidy, Dot. con: how America lost its mind and money in the internet era (HarperCollins Publishers, New York, 2003)

    Google Scholar 

  2. M.S. Alfiad et al., 111-Gb/s transmission over 1040-km field-deployed fiber with 10G/40G neighbors. IEEE Photon. Technol. Lett. 21(10), 615–617 (2009)

    Article  Google Scholar 

  3. C.R.S. Fludger et al., Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission. J. Lightwave Technol. 26(1), 64–72 (2008)

    Article  Google Scholar 

  4. K. Roberts et al., 100 G and beyond with digital coherent signal processing. IEEE Commun. Mag. 48(7), 62–69 (2010)

    Article  Google Scholar 

  5. T. Rahman et al., Record field demonstration of C-band multi-terabit 16QAM, 32QAM and 64QAM over 762 km of SSMF, in Optoelectronics and Communications Conference, 2015

    Google Scholar 

  6. Y.R. Zhou et al., 1.4 Tb real-time alien superchannel transport demonstration over 410 km installed fiber link using software reconfigurable DP-16QAM/QPSK, in OFC (IEEE, 2014)

    Google Scholar 

  7. A. Pagano et al., 400 Gb/s real-time trial using rate-adaptive transponders for next-generation flexible-grid networks [Invited]. J. Opt. Commun. Netw. 7(1), A52–A58 (2015)

    Article  MathSciNet  Google Scholar 

  8. J.-P. Elbers et al., Measurement of the dispersion tolerance of optical duobinary with an MLSE-receiver at 10.7 Gb/s, in Optical Fiber Communication Conference, 2005, Technical Digest, OFC/NFOEC, vol. 4 (IEEE, 2005)

    Google Scholar 

  9. M.G. Taylor, Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photon. Technol. Lett. 16(2), 674–676 (2004)

    Article  Google Scholar 

  10. M. Kuschnerov et al., DSP for coherent single-carrier receivers. J. Lightwave Technol. 27(16), 3614–3622 (2009)

    Article  Google Scholar 

  11. W. Yan et al., 100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core, in Optical Fiber Communication Conference (Optical Society of America, 2013)

    Google Scholar 

  12. A. Napoli et al., Novel DAC digital pre-emphasis algorithm for next-generation flexible optical transponders, in Optical Fiber Communication Conference (Optical Society of America, 2015)

    Google Scholar 

  13. E. Ip, J.M. Kahn, Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26(20), 3416–3425 (2008)

    Article  Google Scholar 

  14. A. Napoli et al., Reduced complexity digital back-propagation methods for optical communication systems. J. Lightwave Technol. 32(7), 1351–1362 (2014)

    Article  Google Scholar 

  15. F.P. Guiomar et al., Fully blind linear and nonlinear equalization for 100G PM-64QAM optical systems. J. Lightwave Technol. 33(7), 1265–1274 (2015)

    Article  Google Scholar 

  16. L.B. Du et al., Digital fiber nonlinearity compensation: toward 1-Tb/s transport. IEEE Signal Process. Mag. 31(2), 46–56 (2014)

    Article  Google Scholar 

  17. A. Napoli et al., Next generation elastic optical networks: the vision of the European research project IDEALIST. IEEE Commun. Mag. 53(2), 152–162 (2015)

    Article  Google Scholar 

  18. V.A.J.M. Sleiffer et al., A comparison between SSMF and large-A eff Pure-Silica core fiber for Ultra Long-Haul 100G transmission. Opt. Express 19(26), B710–B715 (2011)

    Article  Google Scholar 

  19. J. Yu, X. Zhou, Ultra-high-capacity DWDM transmission system for 100G and beyond. IEEE Commun. Mag. 48(3), S56–S64 (2010)

    Article  MathSciNet  Google Scholar 

  20. T. Rahman et al., Ultralong Haul 1.28-Tb/s PM-16QAM WDM transmission employing hybrid amplification. J. Lightwave Technol. 33(9), 1794–1804 (2015)

    Article  Google Scholar 

  21. V.A.J.M. Sleiffer et al., 73.7 Tb/s (96 × 3 × 256-Gb/s) mode-division-multiplexed DP-16QAM transmission with inline MM-EDFA. Opt. Express 20(26), B428–B438 (2012)

    Article  Google Scholar 

  22. O. Gerstel et al., Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), S12–S20 (2012)

    Article  Google Scholar 

  23. D. Rafique et al., Intra super-channel fiber nonlinearity compensation in flex-grid optical networks. Opt. Express 21(26), 32063–32070 (2013)

    Article  Google Scholar 

  24. International Telecommunication Union, Telecommunication Standardization Sector (ITU-T), recommendation G.694

    Google Scholar 

  25. N. Sambo et al., Next generation sliceable bandwidth variable transponders. IEEE Commun. Mag. 53(2), 163–171 (2015)

    Article  MathSciNet  Google Scholar 

  26. J.K. Fischer et al., Bandwidth-variable transceivers based on four-dimensional modulation formats. J. Lightwave Technol. 32(16), 2886–2895 (2014)

    Article  Google Scholar 

  27. T. Rahman et al., Long-haul terabit transmission (2272 km) employing digitally pre-distorted quad-carrier PM-16QAM super-channel, in European Conference on Optical Communication, 2014

    Google Scholar 

  28. A.J. Viterbi et al., Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inf. Theory 29, 543–551 (1983)

    Article  MATH  Google Scholar 

  29. R. Elschner et al., Software-defined transponders for future flexible grid networks, in Photonic Networks and Devices (NETWORKS 2013), Rio Grande, USA, 14–17 July 2013, Paper NT2C.4

    Google Scholar 

  30. M. Kuschnerov et al., Data-aided versus blind single-carrier coherent receivers. IEEE Photon. J. 2, 387–403 (2010)

    Article  Google Scholar 

  31. F. PittalĂ  et al., Data-aided frequency-domain 2Ă—2 MIMO equalizer for 112 Gbit/s PDM-QPSK coherent transmission systems, in Proceedings of Optical Fiber Communication Conference, 2012, Paper OM2H.4

    Google Scholar 

  32. B. Spinnler, Equalizer design and complexity for digital coherent receivers. IEEE J. Sel. Top. Quantum Electron. 16, 1180–1192 (2010)

    Article  Google Scholar 

  33. M. Nölle et al., Investigation of CAZAC sequences for data-aided channel estimation considering nonlinear optical transmission, in OFC 2015, Paper Th3G.2

    Google Scholar 

  34. A. Napoli et al., On the next generation bandwidth variable transponders for future flexible optical systems, in 2014 European Conference on Networks and Communications (EuCNC) (IEEE, 2014)

    Google Scholar 

  35. A. Napoli et al., Low-complexity digital pre-emphasis technique for next generation optical transceiver, in OECC, 2015

    Google Scholar 

  36. N. Markus et al., Performance comparison of different 8QAM constellations for the use in flexible optical networks, in Optical Fiber Communication Conference (Optical Society of America, 2014)

    Google Scholar 

  37. W.B. Pablo, T. Rahman, A. Napoli, M. Nölle, C. Schubert, J. Karl Fischer, Nonlinear digital pre-distortion of transmitter components, in ECOC, 2015

    Google Scholar 

  38. A. Napoli et al., Novel digital pre-distortion techniques for low-extinction ratio Mach-Zehnder modulators, in Optical Fiber Communication Conference (Optical Society of America, 2015)

    Google Scholar 

  39. G.P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 2007)

    MATH  Google Scholar 

  40. A.D. Ellis, J. Zhao, D. Cotter, Approaching the non-linear Shannon limit. J. Lightwave Technol. 28(4), 423–433 (2010)

    Article  Google Scholar 

  41. J. Auge, Can we use flexible transponders to reduce margins? in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013

    Google Scholar 

  42. N.V. Irukulapati et al., Stochastic digital backpropagation. IEEE Trans. Commun. 62(11), 3956–3968 (2014)

    Article  Google Scholar 

  43. D. Rafique, Fiber nonlinearity compensation: commercial applications and complexity analysis. J. Lightwave Technol. (2015)

    Google Scholar 

  44. D. Rafique et al., Performance improvement by fibre nonlinearity compensation in 112 Gb/s PM M-ary QAM, in Optical Fiber Communication Conference (Optical Society of America, 2011)

    Google Scholar 

  45. J. Zhao, Impact of dispersion map management on the performance of back-propagation for nonlinear WDM transmissions, in OECC 2010 Technical Digest, 2010, pp. 760–761

    Google Scholar 

  46. L.B. Du et al., Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation. Opt. Express 20(18), 19921–19927 (2012)

    Article  Google Scholar 

  47. E.F. Mateo et al., Electronic phase conjugation for nonlinearity compensation in fiber communication systems, in Optical Fiber Communication Conference (Optical Society of America, 2011)

    Google Scholar 

  48. S.L. Jansen et al., Optical phase conjugation for ultra long-haul phase-shift-keyed transmission. J. Lightwave Technol. 24(1), 54 (2006)

    Article  Google Scholar 

  49. B.-E. Olsson et al., Experimental demonstration of electro-optical mid-span spectrum inversion for mitigation of non-linear fiber effects, in ECOC, 2012

    Google Scholar 

  50. D. Rafique, A.D. Ellis, Various nonlinearity mitigation techniques employing optical and electronic approaches. IEEE Photon. Technol. Lett. 23(23), 1838–1840 (2011)

    Article  Google Scholar 

  51. H.C. Lim et al., Polarization-independent, wavelength-shift-free optical phase conjugator using a nonlinear fiber Sagnac interferometer. IEEE Photon. Technol. Lett. 11(5), 578–580 (1999)

    Article  Google Scholar 

  52. C.-Y. Lin et al., Adaptive digital back-propagation for optical communication systems, in Tech. Digest of Optical Fiber Communications, 2014

    Google Scholar 

  53. N. Antonio et al., Performance dependence of single-carrier digital back-propagation on fiber types and data rates, in Optical Fiber Communications Conference and Exhibition (OFC) (IEEE, 2014)

    Google Scholar 

  54. S.L. Jansen et al., 20-Gb/s OFDM transmission over 4,160-km SSMF enabled by RF-pilot tone phase noise compensation, in Optical Fiber Communication Conference (Optical Society of America, 2007)

    Google Scholar 

  55. T. Rahman et al., On the mitigation of optical filtering penalties originating from ROADM cascade. IEEE Photon. Technol. Lett. 26(2), 154–157 (2014)

    Article  Google Scholar 

  56. T. Rahman et al., Mitigation of filtering cascade penalties using spectral shaping in optical nodes, in ECOC’14, 2014, pp. 4–19

    Google Scholar 

  57. S. Gringeri, N. Bitar, T.J. Xia, Extending software defined network principles to include optical transport. IEEE Commun. Mag. 51(3), 32–40 (2013)

    Article  Google Scholar 

  58. J. Zhao, A.D. Ellis, Offset-QAM based coherent WDM for spectral efficiency enhancement. Opt. Express 19(15), 14617–14631 (2011)

    Article  Google Scholar 

  59. A. Beling et al., Fully-integrated polarization-diversity coherent receiver module for 100G DP-QPSK, in Proceedings of Optical Fiber Communication Conference, March 2011, Paper OML5

    Google Scholar 

  60. K. Roberts et al., Technologies for optical systems beyond 100G. Opt. Fiber Technol. 17(5), 387–394 (2011)

    Article  Google Scholar 

  61. A. Splett et al., Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities, in ECOC, 1993, Paper MoC2.4

    Google Scholar 

  62. P. Poggiolini et al., Analytical modeling of nonlinear propagation in uncompensated optical transmission links. IEEE Photon. Technol. Lett. 23(11), 742–744 (2011)

    Article  Google Scholar 

  63. P. Poggiolini, The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30(24), 3875–3879 (2012)

    Article  Google Scholar 

  64. T. Rahman et al., Experimental comparison of 1.28 Tb/s Nyquist WDM vs. time-frequency packing, in Photonics in Switching, 2015

    Google Scholar 

  65. X. Zhou et al., Rate-adaptable optics for next generation long-haul transport networks. IEEE Commun. Mag. 51(3), 41–49 (2013)

    Article  Google Scholar 

  66. D. van den Borne, S.L. Jansen, Dynamic capacity optimization using flexi-rate transceiver technology, in Proceedings Opto-electronics Communication Conference (OECC), Busan, Korea, July 2012, Paper 6B4-1

    Google Scholar 

  67. X. Zhou et al., High spectral efficiency 400 Gb/s transmission using PDM time-domain hybrid 32–64 QAM and training-assisted carrier recovery. J. Lightwave Technol. 31(7), 999–1005 (2013)

    Article  Google Scholar 

  68. X. Zhou et al., 4000 km transmission of 50GHz spaced, 10 × 494.85-Gb/s hybrid 32-64QAM using cascaded equalization and training-assisted phase recovery, in OFC, 2012, Post-deadline paper PDP5C.6

    Google Scholar 

  69. Q. Zhuge et al., Time domain hybrid QAM based rate-adaptive optical transmissions using high speed DACs, in Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, March 2013, Paper OTh4E.6

    Google Scholar 

  70. E. Agrell, M. Karlsson, Power-efficient modulation formats in coherent transmission systems. J. Lightwave Technol. 27(22), 5115–5126 (2009)

    Article  Google Scholar 

  71. L.D. Coelho, N. Hanik, Global optimization of fiber-optic communication systems using four-dimensional modulation formats, in European Conference on Optical Communication, September 2011, Paper Mo.2.B.4.

    Google Scholar 

  72. J. Renaudier et al., Experimental transmission of Nyquist pulse shaped 4-D coded modulation using dual polarization 16QAM set-partitioning schemes at 28 GBd, in OFC, 2013, Paper OTu3B.1

    Google Scholar 

  73. J.K. Fischer et al., Generation, transmission and detection of 4D set-partitioning QAM signals. J. Lightwave Technol. 33(5), 1445–1451 (2015)

    Article  Google Scholar 

  74. R. Rios-MĂ¼ller et al., Experimental comparison between hybrid-QPSK/8QAM and 4D-32SP-16QAM formats at 31.2 GBd using Nyquist pulse shaping, in ECOC, September 2013, Paper Th.2.D.2

    Google Scholar 

  75. H. Sun et al., Comparison of two modulation formats at spectral efficiency of 5 bits/dual-pol symbol, in Proceedings of 39th European Conference on Optical Communication (ECOC), London, United Kingdom, September 2013, Paper Th.2.D.3

    Google Scholar 

  76. M. Arabaci et al., Polarization-multiplexed rate-adaptive nonbinary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks. Opt. Express 18(3), 1820–1832 (2010)

    Article  Google Scholar 

  77. G.-H. Gho et al., Rate-adaptive coding for optical fiber transmission systems. J. Lightwave Technol. 29(2), 222–233 (2011)

    Article  Google Scholar 

  78. G.-H. Gho, J.M. Kahn, Rate-adaptive modulation and coding for optical fiber transmission systems. J. Lightwave Technol. 30(12), 1818–1828 (2012)

    Article  Google Scholar 

  79. G.-H. Gho, M. Kahn, Rate-adaptive modulation and low-density parity-check coding for optical fiber transmission systems. IEEE/OSA J. Opt. Commun. Netw. 4(10), 760–768 (2012)

    Article  Google Scholar 

  80. M. Arabaci et al., Nonbinary LDPC-coded modulation for rate-adaptive optical fiber communication without bandwidth expansion. IEEE Photon. Technol. Lett. 24(16), 1402–1404 (2012)

    Article  Google Scholar 

  81. Y. Zhang et al., Rate-adaptive four-dimensional nonbinary LDPC-coded modulation for long-haul optical transport networks, in Proceedings of Optical Fiber Communication Conference (OFC), Los Angeles, USA, March 2012, Paper JW2A.46

    Google Scholar 

  82. Y. Zhang, I.B. Djordjevic, Staircase rate-adaptive LDPC-coded modulation for high-speed intelligent optical transmission, in Optical Fiber Communication Conference (OFC), San Francisco, USA, March 2014, Paper M3A.6

    Google Scholar 

  83. L. Beygi et al., Rate-adaptive coded modulation for fiber-optic communications. J. Lightwave Technol. 32(2), 333–343 (2014)

    Article  Google Scholar 

  84. E. Le Taillandier de Gabory et al., Experimental demonstration of the improvement of system sensitivity using multiple state Trellis coded optical modulation with QPSK and 16QAM constellations, in OFC, 2015, Paper W3K.3

    Google Scholar 

  85. M. Nölle et al., Techniques to realize flexible optical terabit per second transmission systems, in Proc. SPIE 8646, Optical Metro Networks and Short-Haul Systems V, 864602, 2013

    Google Scholar 

  86. D. Hillerkuss et al., 26 Tbit/s line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photon. 5, 364–371 (2011)

    Article  Google Scholar 

  87. Y. Ma et al., 1-Tb/s single-channel coherent optical OFDM transmission with orthogonal-band multiplexing and subwavelength bandwidth access. J. Lightwave Technol. 28, 308–315 (2010)

    Article  Google Scholar 

  88. W. Shieh et al., 107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing. Opt. Express 16, 6378–6386 (2008)

    Article  MathSciNet  Google Scholar 

  89. X. Liu et al., 448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs. J. Lightwave Technol. 29, 483–490 (2011)

    Article  Google Scholar 

  90. N. Sambo et al., First demonstration of SDN-controlled SBVT based on multi-wavelength source with programmable and asymmetric channel spacing, in ECOC, 2014, Paper We.3.2

    Google Scholar 

  91. J.-X. Cai et al., Transmission of 96Ă—100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608 km and 400% spectral efficiency over 4,368 km, in OFC, 2010, Paper PDP B10

    Google Scholar 

  92. G. Gavioli et al., Investigation of the impact of ultra-narrow carrier spacing on the transmission of a 10-carrier 1Tb/s superchannel, in Proceedings of Optical Fiber Communication Conference, USA, March 2010, Paper OThD3

    Google Scholar 

  93. A. Barbieri et al., Time-frequency packing for linear modulations: spectral efficiency and practical detection schemes. IEEE Trans. Commun. 57(10), 2951–2959 (2009)

    Article  Google Scholar 

  94. M. Secondini et al., Optical time-frequency packing: principles, design, implementation, and experimental demonstration, ArXiv e-prints (2014)

    Google Scholar 

  95. A. Barbieri et al., OFDM versus single-carrier transmission for 100 Gbps optical communication. J. Lightwave Technol. 28, 2537–2551 (2010)

    Article  Google Scholar 

  96. C. Shannon, Communication in the presence of noise. Proc. Inst. Radio Engrs. 37, 10–21 (1949)

    MathSciNet  Google Scholar 

  97. R. Cigliutti et al., Ultra-long-haul transmission of 16 × 112 Gb/s spectrally-engineered DAC-generated Nyquist-WDM PM-16QAM channels with 1.05 × (symbol-rate) frequency spacing, in OFC, 2012, Paper OTh3A.3

    Google Scholar 

  98. R. Schmogrow et al., 150 Gbit/s real-time Nyquist pulse transmission over 150 km SSMF enhanced by DSP with dynamic precision, in Proceedings of Optical Fiber Communication Conference, USA, March 2012, Paper OM2A.6

    Google Scholar 

  99. S. Chandrasekhar et al., Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber, in ECOC, 2009, Paper PD 2.6

    Google Scholar 

  100. R. Dischler, F. Buchali, Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF, in OFC, 2009, Paper PDPC2

    Google Scholar 

  101. S. Jansen et al., Optical OFDM, a hype or is it for real?, in ECOC, 2008

    Google Scholar 

  102. R. Freund et al., Single- and multi-carrier techniques to build up Tb/s per channel transmission systems, in International Conference on Transparent Optical Networks (ICTON), 2010

    Google Scholar 

  103. E. Ip et al., Coherent detection in optical fiber systems. Opt. Express 16(2), 753–791 (2008)

    Article  Google Scholar 

  104. M.S. Alfiad et al., A comparison of electrical and optical dispersion compensation for 111-Gb/s POLMUX–RZ–DQPSK. J. Lightwave Technol. 27(16), 3590–3598 (2009)

    Article  Google Scholar 

  105. C. Schubert et al., New trends and challenges in optical digital transmission systems, in Proc. 38th European Conference on Optical Communication (ECOC), September 16–20, 2012, Amsterdam (Netherlands), Paper We.1.C.1

    Google Scholar 

  106. A.V. Tran et al., 8×40-Gb/s optical coherent pol-mux single carrier system with frequency domain equalization and training sequences. IEEE Photon. Technol. Lett. 24(11), 885–887 (2012)

    Article  Google Scholar 

  107. X. Zhou et al., 12,000 km transmission of 100GHz spaced, 8 × 495-Gb/s PDM time-domain hybrid QPSK-8QAM signals, in Proceedings of Optical Fiber Communication Conference, Anaheim, USA, March 2013, Paper OTu2B.4

    Google Scholar 

  108. M. Karlsson, E. Agrell, Which is the most power-efficient modulation format in optical links? Opt. Express 17(13), 10814–10819 (2009)

    Article  Google Scholar 

  109. D.S. Millar, S.J. Savory, Blind adaptive equalization of polarization-switched QPSK modulation. Opt. Express 19(9), 8533–8538 (2011)

    Article  Google Scholar 

  110. S. Alreesh et al., Blind adaptive equalization for 6PolSK-QPSK signals, in ECOC, 2013, Paper Mo.4.D.3

    Google Scholar 

  111. M. Jinno et al., Multiflow optical transponder for efficient multilayer optical networking. IEEE Commun. Mag. 50(5), 56–65 (2012)

    Article  Google Scholar 

  112. N. Amaya et al., Introducing node architecture flexibility for elastic optical networks. J. Opt. Commun. Netw. 5(6), 593–608 (2013)

    Article  Google Scholar 

  113. A. Stavdas et al., A novel architecture for highly virtualised software-defined optical clouds, in ECOC, Mo.3.E.4, 22–26, London, UK, September 2013

    Google Scholar 

  114. M. Nölle et al., Transmission of 5×62 Gbit/s DWDM coherent OFDM with a spectral efficiency of 7.2 Bit/s/Hz using joint 64-QAM and 16-QAM modulation, in OFC, 2010

    Google Scholar 

  115. A. Napoli et al. Digital Compensation of Bandwidth Limitations for High-Speed DACs and ADCs, IEEE/OSA journal of lightwave technology, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Napoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Napoli, A., Rafique, D., Bohn, M., Nölle, M., Fischer, J.K., Schubert, C. (2016). Transmission in Elastic Optical Networks. In: LĂ³pez, V., Velasco, L. (eds) Elastic Optical Networks. Optical Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-30174-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30174-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30173-0

  • Online ISBN: 978-3-319-30174-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics