Skip to main content

A Non-linear Decentralized Control of Multimachine Power Systems Based on a Backstepping Approach

  • Chapter
  • First Online:
Advances and Applications in Nonlinear Control Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 635))

  • 2321 Accesses

Abstract

Power system requires high-performance control techniques due to their elevated complexity, high nonlinearity and almost continuously time-varying nature. Also, power systems are often subjected to small and large disturbances. To enhance the multimachine power system stability, a new approach to designing decentralized nonlinear control scheme is proposed. The approach seeks first build a novel mathematical model of multimachine power systems. The main characteristic of this model is that interactions between generators and changes in operating conditions are represented by time-varying parameters. More important, those parameters are update online, using only local measurements. Second, it develops a decentralized controller for the transient stabilization and voltage regulation. The controller consists of two controllers, known as the terminal voltage regulator and rotor speed stabilizer. The methodology adopted is based on backstepping design strategy. The proposed stabilizing feedback laws for the power system are shown to be globally asymptotically stable in the context of Lyapunov theory. Case studies are achieved in a two-area four machine power system to verify the effectiveness of the approach. Numerical results are presented to illustrate the usefulness and the performance of the proposed control scheme, under different contingencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbadi A, Nezli L, Boukhetala D (2013) A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multi-machine power systems. Int J Electr Power Energy Syst 45(1):456–467

    Article  Google Scholar 

  2. Alkhatib H, Duveau J (2013) Dynamic genetic algorithms for robust design of multi-machine power system stabilizers. Int J Electr Power Energy Syst 45(1):242–245

    Article  Google Scholar 

  3. Anderson PM, Fouad AA (1994) Power system control and stability. IEEE Press, New York

    Google Scholar 

  4. Bandal V, Bandyopadhyay B, Kulkarni AM (2005) Decentralized sliding mode control technique based power system stabilizer (PSS) for multimachine power system. In: Proceedings of the conference on control applications, Toronto, Canada

    Google Scholar 

  5. Colbia-Vega A, de Léon-Morales J, Fridman L, Salas-Péna O, Mata-Jiménez MT (2008) Robust excitation control design using sliding-mode technique for multimachine power systems. Electr Power Syst Res 78:1627–1643

    Article  Google Scholar 

  6. El-Metwally KA, Malik OP (1995) Fuzzy logic power system stabilizer. IEE Proc Gener, Transm Distrib 142(3):277–281

    Article  Google Scholar 

  7. Ghandakly A, Dai J (2000) An adaptive synchronous generator stabilizer design by generalized multivariable pole shifting (GMPS) technique. IEEE Trans Power Syst 7(3):436–446

    Google Scholar 

  8. Hill DJ, Wang Y (2000) Nonlinear decentralized control of large scale power systems. Automatica 36:1275–1289

    Article  MathSciNet  MATH  Google Scholar 

  9. Huerta H, Alexander G, Loukianov Cañedo JM (2010) Decentralized sliding mode block control of multimachine power systems. Int J Electr Power Energy Syst 32(1):1–11

    Article  Google Scholar 

  10. Hui L, Wechu H, Song Y (2012) Lyapunov-based decentralized excitation control for global asymptotic stability and voltage regulation of multi-machine power systems. IEEE Trans Power Syst 27(4):2262–2270

    Article  Google Scholar 

  11. Leonid M Fridman, Soto-Cota A (2011) High-order block sliding-mode controller for a synchronous generator with an exciter system. IEEE Trans Ind Electr 58(1):337–347

    Article  Google Scholar 

  12. Jiao X, Sun Y, Shen T (2005) Adaptive controller design for a synchronous generator with unknown perturbation in mechanical power. Int J Control Autom Syst 3(2):308–314

    Google Scholar 

  13. Jiawei Y, Zhu C, Chengxiong M, Dan W, Jiming L, Jianbo S, Miao L, Dah L, Xiaoping L (2014) Analysis and assessment of VSC excitation system for power system stability enhancement. Int J Electr Power Energy Syst 7(5):350–357

    Google Scholar 

  14. Karimi A, Feliachi A (2008) Decentralized adaptive backstepping of electric power systems. Electr Power Syst Res 78(3):484–493

    Article  Google Scholar 

  15. Krstić M, Kanellakopoulos I, Kokotović P (1995) Nonlinear and adaptive control design. Wiley Interscience Publication, New York

    MATH  Google Scholar 

  16. Kundur GP (1994) Power system stability and control. McGraw-Hill, NewYork

    Google Scholar 

  17. Loukianov AG, Cañedo JM, Huerta H (2006) Decentralized sliding mode block control of power systems. In: Proceedings of the of PES general meeting, Montreal, Quebec, Canada

    Google Scholar 

  18. Mohagheghi S, Valle Y, Venayagamoorthy GK, Harley RG (2007) A proportional-integrator type adaptive critic design-based neuro-controller for a static compensator in a multimachine power system. IEEE Trans Ind Electr 54(1):86–96

    Article  Google Scholar 

  19. Mrad F, Karaki S, Copti B (2000) An adaptive fuzzy-synchronous machine stabilizer. IEEE Trans Syst Man Cybern-Part C 30(1):131–137

    Article  Google Scholar 

  20. Okou F, Akhrif O, Dessaint L-A (2003) A novel modelling approach for decentralised voltage and speed control in multimachine power systems. Int J Control 76(8):845–857

    Article  MathSciNet  MATH  Google Scholar 

  21. Okou F, Dessaint L-A, Akhrif O (2005) Power systems stability enhancement using a wide-area signals based hierarchical controller. IEEE Trans Power Syst 2(3):1465–1477

    Article  MATH  Google Scholar 

  22. Ouassaid M, Nejmi A, Cherkaoui M, Maaroufi M (2008) A nonlinear backstepping controller for power systems terminal voltage and rotor speed controls. Int Rev Autom Control 3(1):355–363

    Google Scholar 

  23. Ouassaid M, Maaroufi M, Cherkaoui M (2010) Decentralized nonlinear adaptive control and stability analysis of multimachine power system. Int Rev Electr Eng 5(6):2754–2763

    Google Scholar 

  24. Ouassaid M, Maaroufi M, Cherkaoui M (2012) Observer based nonlinear control of power system using sliding mode control control strategy. Electr Power Syst Res 84(1):135–143

    Article  Google Scholar 

  25. Ouassaid M, Maaroufi M, Cherkaoui M (2015) Transient stability enhancement of power systems using observer-based sliding mode control. Stud Comput Intell 581:435–462

    Article  Google Scholar 

  26. Park JW, Harley RG, Venayagamoorthy GK (2003) Adaptive-critic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks. IEEE Trans Ind Appl 39(5):1529–1540

    Article  Google Scholar 

  27. Rasappan S, Vaidyanathan S (2012) Hybrid synchronization of n-scroll Chua and Lur’e chaotic systems via backstepping control with novel feedback. Arch Control Sci 22(3):343–364

    MathSciNet  MATH  Google Scholar 

  28. Segal R, Kothari ML, Madnani S (2000) Radial basis function (RBF) network adaptive power system stabilizer. IEEE Trans Power Syst 15(2):722–727

    Article  Google Scholar 

  29. Shen T, Mei S, Lu Q, Hu W, Tamura K (2003) Adaptive nonlinear excitation control with L2 disturbance attenuation for power systems. Automatica 39(1):81–89

    Article  MathSciNet  MATH  Google Scholar 

  30. Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of n-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian J Sci Eng 39(4):3351–3364

    Article  Google Scholar 

  31. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the lobal chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58

    Article  Google Scholar 

  32. Venayagamoorthy GK, Harley RG, Wunsch DC (2003) Dual heuristic programming excitation neurocontrol for generators in a multimachine power system. IEEE Trans Ind Appl 39(2):382–394

    Article  Google Scholar 

  33. Wang SK (2013) A novel objectif function and algorithm for optimal PSS parameter design in a multi-machine power System. IEEE Trans Power Syst 28(1):522–531

    Article  Google Scholar 

  34. Wang Y, Guo G, Hill D (1997) Robust decentralized nonlinear controller design for multimachine power systems. Automatica 33(9):1725–1734

    Article  MathSciNet  Google Scholar 

  35. Wang Y, Cheng D, Li C, Ge Y (2003) Dissipative Hamiltonian realization and energybased L2-disturbance attenuation control of multimachine power systems. IEEE Trans Autom Control 48(8):1428–1433

    Article  MathSciNet  Google Scholar 

  36. Wu B, Malik OP (2006) Multivariable adaptive control of synchronous machines in a multimachine power system. IEEE Trans Power Syst 21(2):1772–1787

    Article  Google Scholar 

  37. Xi Z, Cheng D, Lu Q, Mei S (2002) Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38(2):527–534

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ouassaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ouassaid, M., Maaroufi, M., Cherkaoui, M. (2016). A Non-linear Decentralized Control of Multimachine Power Systems Based on a Backstepping Approach. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Nonlinear Control Systems. Studies in Computational Intelligence, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-319-30169-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30169-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30167-9

  • Online ISBN: 978-3-319-30169-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics