Advertisement

Quantified Quality Criteria of Contextual Bipolar Linguistic Summaries

  • Mateusz DziedzicEmail author
  • Janusz Kacprzyk
  • Sławomir Zadrożny
  • Guy De Tré
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 634)

Abstract

In our previous work we have proposed the concept of a contextual bipolar linguistic summary. It is an extension of the seminal concept of a linguistic summary proposed by Yager which is based on the application of Zadeh’s calculus of linguistically quantified propositions to more intuitive and human consistent data mining. The original Yager’s concept evolved over the years and our recent contribution to this theory is the inclusion of the concept of bipolarity of information and preferences. This enrichment of the notion of the linguistic summary calls for specialized measures of its quality, interestingness, etc. We further study this problem and in this paper we propose a new approach to assessing the quality of this type of summaries.

Keywords

Linguistic summary Context Bipolarity Measures of quality Data mining 

Notes

Acknowledgments

Mateusz Dziedzic contribution is supported by the Foundation for Polish Science under International PhD Projects in Intelligent Computing. Project financed from The European Union within the Innovative Economy Operational Programme (2007–2013) and European Regional Development Fund. This work was also partially supported by the National Science Centre (NCN) under Grant No. UMO-2012/05/B/ST6/03068.

References

  1. 1.
    Castillo-Ortega, R., Marín, N., Sánchez, D., Tettamanzi, A.G.: Quality Assessment in Linguistic Summaries of Data. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) Advances in Computational Intelligence, communications in computer and information, vol. 298, science edn, pp. 285–294. Springer, Berlin (2012)Google Scholar
  2. 2.
    De Tré, G., Zadrożny, S., Bronselaer, A.J.: Handling bipolarity in elementary queries to possibilistic databases. IEEE Trans. Fuzzy Syst. 18(3), 599–612 (2010)CrossRefGoogle Scholar
  3. 3.
    Delgado, M., Ruiz, M.D., Sánchez, D., Vila, M.A.: Fuzzy quantification: a state of the art. Fuzzy Sets Syst. 242, 1–30 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Donis-Diaz, C.A., Muro, A., Bello-Pérez, R., Morales, E.: A hybrid model of genetic algorithm with local search to discover linguistic data summaries from creep data. Expert Syst. Appl. 41(4), 2035–2042 (2014)CrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002, LNAI, vol. 2522, pp. 174–182. Springer, Berlin (2002)Google Scholar
  6. 6.
    Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012). http://linkinghub.elsevier.com/retrieve/pii/S0165011410004598 Google Scholar
  7. 7.
    Dubois, D., Prade, H.: On various forms of bipolarity in flexible querying. In: Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology (Eusflat) (2013). http://www.atlantis-press.com/php/paper-details.php?id=8414
  8. 8.
    Dubois, D., Prade, H.: Modeling and if possible and or at least: different forms of bipolarity in flexible querying. Flexible Approaches in Data, Information and Knowledge Management, pp. 3–19. Springer International Publishing, Berlin (2014)Google Scholar
  9. 9.
    Dziedzic, M., Kacprzyk, J., Zadrożny, S.: On some quality criteria of bipolar linguistic summaries. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 643–646. Kraków, Poland (2013)Google Scholar
  10. 10.
    Dziedzic, M., Kacprzyk, J., Zadrożny, S.: Bipolar linguistic summaries: A novel fuzzy querying driven approach. In: Joint IFSA World Congress and NAFIPS Annual Meeting, IFSA/NAFIPS, Edmonton, Alberta, Canada. pp. 1279–1284, IEEE, June 24–28 2013Google Scholar
  11. 11.
    Dziedzic, M., Zadrożny, S., Kacprzyk, J.: Towards bipolar linguistic summaries: a novel fuzzy bipolar querying based approach. In: Proceedings of 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2012)Google Scholar
  12. 12.
    George, R., Srikanth, R.: Data summarization using genetic algorithms and fuzzy logic. In: Herrera, F., Verdegay, J. (eds.) Genetic Algorithms and Soft Computing, pp. 599–611. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic summaries of databases. Int. J. Appl. Math. Comput. Sci. 10, 813–834 (2000)zbMATHGoogle Scholar
  14. 14.
    Kacprzyk, J., Ziółkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Trans. System, Man Cybern. 16(3), 474–479 (1986)Google Scholar
  15. 15.
    Kacprzyk, J., Yager, R.R.: Linguistic summaries of data using fuzzy logic. Int. J. Gen. Syst. 30, 33–154 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kacprzyk, J., Yager, R.R., Zadrożny, S.: A fuzzy logic based approach to linguistic summaries of databases. Int. J. Appl. Math. Comput. Sci. 10, 813–834 (2000)zbMATHGoogle Scholar
  17. 17.
    Kacprzyk, J., Zadrożny, S.: Compound bipolar queries: combining bipolar queries and queries with fuzzy linguistic quantifiers. In: Pasi, G., Montero, J., Ciucci, D. (eds.) Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-13). pp. 848–855. Atlantis Press (2013)Google Scholar
  18. 18.
    Kacprzyk, J., Zadrożny, S.: On a fuzzy querying and data mining interface. Kybernetika 36, 657–670 (2000)zbMATHGoogle Scholar
  19. 19.
    Kacprzyk, J., Zadrożny, S.: Computing with words in intelligent database querying: standalone and internet-based applications. Inf. Sci. 134(1–4), 71–109 (2001)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kacprzyk, J., Zadrożny, S.: Data mining via linguistic summaries of databases: an interactive approach. In: Ding, L. (ed.) A New Paradigm of Knowledge Engineering by Soft Computing, pp. 325–345. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  21. 21.
    Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms: towards natural language based knowledge discovery tools. Inf. Sci. 173(4), 281–304 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kacprzyk, J., Zadrożny, S.: Comprehensiveness and interpretability of linguistic data summaries: A natural language focused perspective. In: Proceedings of 2013 IEEE Symposium on Computational Intelligence for Human-like Intelligence, CIHLI 2013, Singapore, pp. 33–40. IEEE, April 16–19 2013. http://dx.doi.org/10.1109/CIHLI.2013.6613262
  23. 23.
    Kacprzyk, J., Zadrożny, S.: Hierarchical bipolar fuzzy queries: towards more human consistent flexible queries. In: Proceedings of 2013 IEEE International Conference onFuzzy Systems (FUZZ), pp. 1–8 (2013)Google Scholar
  24. 24.
    Kacprzyk, J., Zadrożny, S.: Computing with words, protoforms and linguistic data summaries: towards a novel natural language based data mining and knowledge discovery tools. J. Autom. Mobile Robot. Intell. Syst. 8(3), 52–58 (2014)CrossRefGoogle Scholar
  25. 25.
    Kacprzyk, J., Zadrożny, S.: Linguistic summaries of time series: A powerful and prospective tool for discovering knowledge on time varying processes and systems. In: Seising, R., Trillas, E., Kacprzyk, J. (eds.) Towards the Future of Fuzzy Logic, Studies in Fuzziness and Soft Computing, vol. 325, pp. 65–77. Springer International Publishing (2015)Google Scholar
  26. 26.
    Kacprzyk, J., Zadrożny, S., Dziedzic, M.: A novel view of bipolarity in linguistic data summaries. In: Kczy, L.T., Pozna, C.R., Kacprzyk, J. (eds.) Issues and Challenges of Intelligent Systems and Computational Intelligence, Studies in Computational Intelligence, vol. 530, pp. 215–229. Springer International Publishing (2014)Google Scholar
  27. 27.
    Kacprzyk, J., Zadrożny, S., Tré, G.D.: Fuzziness in database management systems: half a century of developments and future prospects. Fuzzy Sets Syst. 281, 300–307 (2015). http://dx.doi.org/10.1016/j.fss.2015.06.011 Google Scholar
  28. 28.
    Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In: Stocker, P.M., Kent, W., Hammersley, P. (eds.) Proceedings of the 13th International Conference on Very Large Data. pp. 217–225. Morgan Kaufmann Publishers Inc. (1987)Google Scholar
  29. 29.
    Marín, N., Sánchez, D.: On generating linguistic descriptions of time series. Fuzzy Sets Syst. 1, 1–25 (2015)Google Scholar
  30. 30.
    Matthé, T., De Tré, G., Zadrożny, S., Kacprzyk, J., Bronselaer, A.: Bipolar database querying using bipolar satisfaction degrees. Int. J. Intell. Syst. 26(10), 890–910 (2011)CrossRefGoogle Scholar
  31. 31.
    Rasmussen, D., Yager, R.: SummarySQL–a fuzzy tool for data mining. Intell. Data Anal. 1(1–4), 49–58 (1997)CrossRefGoogle Scholar
  32. 32.
    Wilbik, A., Keller, J.M.: A fuzzy measure similarity between sets of linguistic summaries. IEEE Trans. Fuzzy Syst. 21(1), 1282–1288 (2013)CrossRefGoogle Scholar
  33. 33.
    Yager, R.: A new approach to the summarization of data. Inf. Sci. 28, 69–86 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Yager, R.: On linguistic summaries of data. In: Frawley, W., Piatetsky-Shapiro, G. (eds.) Knowledge Discovery in Databases, pp. 347–363. AAAI/MIT Press, Cambridge (1991)Google Scholar
  35. 35.
    Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9, 149–184 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zadrożny, S.: Bipolar queries revisited. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) Modelling Decisions for Artificial Intelligence (MDAI 2005). LNAI, vol. 3558, pp. 387–398. Springer, Berlin (2005)CrossRefGoogle Scholar
  37. 37.
    Zadrożny, S., De Tré, G., De Caluwe, R., Kacprzyk, J.: An overview of fuzzy approaches to flexible database querying. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 34–53. Information Science Reference, New York (2008)Google Scholar
  38. 38.
    Zadrożny, S., Kacprzyk, J.: Bipolar queries and queries with preferences. In: Proceedings of 17th International Workshop on Database and Expert Systems Applications (DEXA ’06). pp. 415–419 (2006)Google Scholar
  39. 39.
    Zadrożny, S., Kacprzyk, J.: Bipolar queries: a way to deal with mandatory and optional conditions in database querying. Uncertainty Approaches for Spatial Data Modeling and Processing, pp. 117–132. Springer, Berlin (2010)Google Scholar
  40. 40.
    Zadrożny, S., Kacprzyk, J.: Bipolar queries: an aggregation operator focused perspective. Fuzzy Sets Syst. 196, 69–81 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zadrożny, S., Kacprzyk, J., De Tré, G.: Bipolar queries in textual information retrieval: a new perspective. Inf. Proc. Manag. 48(3), 390–398 (2012)CrossRefGoogle Scholar
  42. 42.
    Zadrożny, S., Kacprzyk, J., Dziedzic, M.: Contextual bipolar queries: “or if impossible” operator case. In: Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT 2015). Atlantis Press (2015)Google Scholar
  43. 43.
    Zadrożny, S., Kacprzyk, J., Dziedzic, M.: On a new type of contextual queries and linguistic summaries of a bipolar type. In: Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015). IEEE (2015)Google Scholar
  44. 44.
    Zadrożny, S., Kacprzyk, J., Dziedzic, M., De Tré, G.: Contextual bipolar queries. In: Jamshidi, M., Kreinovich, V., Kacprzyk, J. (eds.) Advance Trends in Soft Computing, Studies in Fuzziness and Soft Computing, vol. 312, pp. 421–428. Springer International Publishing, Berlin (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mateusz Dziedzic
    • 1
    • 2
    Email author
  • Janusz Kacprzyk
    • 3
  • Sławomir Zadrożny
    • 3
  • Guy De Tré
    • 2
  1. 1.Department of Automatic Control and Information TechnologyCracow University of TechnologyKrakówPoland
  2. 2.Department of Telecommunications and Information ProcessingGhent UniversityGhentBelgium
  3. 3.Systems Research Institute, Polish Academy of SciencesWarszawaPoland

Personalised recommendations