Forecasting of Short Time Series with Intelligent Computing

  • Katarzyna KaczmarekEmail author
  • Olgierd Hryniewicz
Part of the Studies in Computational Intelligence book series (SCI, volume 634)


Although time series analysis and forecasting have been studied since the seventeenth century and the literature related to its statistical foundations is extensive, the problem arises when the assumptions underlying statistical modeling are not fulfilled due to the shortness of available data. In such cases, additional expert knowledge is needed to support the forecasting process. The inclusion of prior knowledge may be easily formalized with the Bayesian approach. However, the proper formulation of prior probability distributions is still one of the main challenges for practitioners. Hopefully, intelligent computing can support the formulation of the prior knowledge. In this paper, we review recent trends and challenges of the interdisciplinary research on time series forecasting with the use of intelligent computing, especially fuzzy systems. Then, we propose a method that incorporates fuzzy trends and linguistic summaries for the forecasting of short time series. Experiments show that it is a very promising and human-consistent approach.


Time series Forecasting Fuzzy sets Soft computing Bayesian methods 



Katarzyna Kaczmarek is supported by the Foundation for Polish Science under International Ph.D. Projects in Intelligent Computing financed from the European Union within the Innovative Economy Operational Programme 2007–2013 and European Regional Development Fund.


  1. 1.
    Wolpert, D.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)CrossRefGoogle Scholar
  2. 2.
    Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Zadeh, L.A.: From computing with numbers to computing with words—from manipulation of measurements to manipulation of perceptions. Intelligent Systems and Soft Computing. Lecture Notes in Computer Science, pp. 3–40. Springer, New York (2000)Google Scholar
  4. 4.
    Kacprzyk, J., Wilbik, A.: Using fuzzy linguistic summaries for the comparison of time series: an application to the analysis of investment fund quotations. IFSA/EUSFLAT Conf. 1321–1326 (2009)Google Scholar
  5. 5.
    Conde-Clemente, P., Alonso, J., Trivino, G.: Interpretable fuzzy system allowing to be framed in a profile photo through linguistic expressions, In: Proceedings of 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), pp. 463–468 (2013)Google Scholar
  6. 6.
    Kempe, S., Hipp, J., Lanquillon, C., Kruse, R.: Mining frequent temporal patterns in interval sequences. Fuzziness Knowl.-Based Syst. Int. J. Uncertain. 16(5), 645–661 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    Mörchen, F., Batal, I., Fradkin, D., Harrison, J., Hauskrecht, M.: Mining recent temporal patterns for event detection in multivariate time series data, KDD, pp. 280–288 (2012)Google Scholar
  8. 8.
    Höppner, F., Peter, S., Berthold, M.: Enriching multivariate temporal patterns with context information to support classification. Comput. Intell. Intell. Data Anal. Studies Comput. Intell. 445, 195–206 (2013)CrossRefGoogle Scholar
  9. 9.
    Burda, M., Štěpnička, M., Štěpničková, L.: Fuzzy rule-based ensamble for time series prediction: progresses with associations mining. Strengthening Links Between Data Analysis and Soft Computing, vol. 315, pp. 261–271, Springer, Berlin (2014)Google Scholar
  10. 10.
    Yarushkina, N., Perfilieva, I., Afanasieva, T., Igonin, A., Romanov, A., Shishkina, V.: Time series processing and forecasting using soft computing tools. In: RSFDGrC’11 Proceedings of the 13th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, pp. 155–162, Springer, Berlin (2011)Google Scholar
  11. 11.
    Kacprzyk, J., Zadrożny, S.: Protoforms of linguistic data summaries: towards more general natural-language-based data mining tools. Soft Computing Systems. IOS Press, Amsterdam (2002)Google Scholar
  12. 12.
    Kacprzyk, J., Zadrożny, S.: Linguistic database summaries and their protoforms: towards natural language based knowledge discovery tools. Inf. Sci. 173, 281–304 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kaczmarek, K., Hryniewicz, O.: Linguistic knowledge about temporal data in bayesian linear regression model to support forecasting of time series. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 655–658 (2013)Google Scholar
  14. 14.
    Kaczmarek, K., Hryniewicz, O., Kruse, R.: Human input about linguistic summaries in time series forecasting, In: Proceedings of the Eighth International Conference on Advances in Computer-Human Interactions ACHI, pp. 9–13 (2015)Google Scholar
  15. 15.
    Hryniewicz, O., Kaczmarek, K.: Bayesian analysis of time series using granular computing approach. Appl. Soft Comput. 1(3) (2015)Google Scholar
  16. 16.
    Eberhart, R., Simpson, P., Dobbins, R.: Computational Intelligence PC Tools. Academic Press, Boston (1996)Google Scholar
  17. 17.
    Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Commun. ACM 37, 77–84 (1994)CrossRefGoogle Scholar
  18. 18.
    Kruse, R., Borgelt, C., Klawonn, F., Moewes, C., Steinbrecher, M., Held, P.: Computational intelligence. Texts in Computer Science. fuzzy Sets and fuzzy logic. Springer, London (2013)Google Scholar
  19. 19.
    Song, Q., Chissom, B.: Fuzzy time series and its models. Fuzzy Sets Syst. 54(3), 269–277 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, H.: An integrated fuzzy time series forecasting system. Expert Syst. Appl. 36, 10045–10053 (2009)Google Scholar
  21. 21.
    Li, S., Kuo, S., Cheng, Y., Chen, C.: A vector forecasting model for fuzzy time series. Appl. Soft Comput. J. 11(3), 3125–3134 (2011)CrossRefGoogle Scholar
  22. 22.
    Chen, M., Chen, B.: Online fuzzy time series analysis based on entropy discretization and a fast fourier transform. Appl. Soft Comput. J. 14, 156–166 (2014)CrossRefGoogle Scholar
  23. 23.
    Chen, S., Chen, C.: Taiex forecasting based on fuzzy time series and fuzzy variation groups. IEEE Trans. Fuzzy Syst. 19(1), 1–12 (2011)CrossRefGoogle Scholar
  24. 24.
    Gil, M., Hryniewicz, O.: Statistics with imprecise data. Encyclopedia of Complexity and Systems Science, pp. 8679–8690 (2009)Google Scholar
  25. 25.
    Shapiro, A.: Fuzzy random variables. Insur.: Math. Econ. 44, 307–314 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Tanaka, H., Uejima, S., Asai, K.: Linear regression analysis with fuzzy model. IEEE Trans. Syst. Man Cybern. 12, 903–907 (1982)CrossRefzbMATHGoogle Scholar
  27. 27.
    Helin, T., Koivisto, H.: The garch-fuzzydensity method for density forecasting. Appl. Soft Comput. J. 11(6), 4212–4225 (2011)CrossRefGoogle Scholar
  28. 28.
    Tseng, F., Tzeng, G., Yu, H., Yuan, B.: Fuzzy arima model for forecasting the foreign exchange market. Fuzzy Sets Syst. 118, 9–19 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tseng, F., Tzeng, G.: A fuzzy seasonal arima model for forecasting. Fuzzy Sets Syst. 126, 367–376 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H.: Fast discovery of association rules. Advances in Knowledge Discovery and Data mining, pp. 307–328. AAAI Press, Menlo Park Calif (1996)Google Scholar
  31. 31.
    Klawonn, F., Kruse, R.: Derivation of fuzzy classifcation rules from multidimensional data. Advances in Intelligent Data Analysis, pp. 90–94 (1995)Google Scholar
  32. 32.
    Mörchen, F., Ultsch, A.: Efficient mining of understandable patterns from multivariate interval time series. Data Min. Knowl. Discov. 15(2), 181–215 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Peter, S., Hoeppner, F.: Finding temporal patterns using constraints on (partial) absence, presence and duration, Lecture Notes in Computer Science, pp. 442–451 (2010)Google Scholar
  34. 34.
    Mörchen, F., Thies, M., Ultsch, A.: Efficient mining of all margin-closed itemsets with applications in temporal knowledge discovery and classification by compression. Knowl. Inf. Syst. 29(1), 55–80 (2011)CrossRefGoogle Scholar
  35. 35.
    Chen, C., Hong, T., Tseng, V.: Fuzzy data mining for time-series data. Appl. Soft Comput. J. 12(1), 536–542 (2012)CrossRefGoogle Scholar
  36. 36.
    Alvarez, M., Felix, P., Carinena, P.: Discovering metric temporal constraint networks. Artif. Intell. Med. 58(3), 139–154 (2013)CrossRefGoogle Scholar
  37. 37.
    Höppner, F.: Knowledge Discovery from Sequential Data. Ph.D. thesis (2002)Google Scholar
  38. 38.
    Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  39. 39.
    Schockaert, S., Cock, M.D.: Temporal reasoning about fuzzy intervals. Artif. Intell. 172, 1158–1193 (2008)Google Scholar
  40. 40.
    Wilbik, A., Kacprzyk, J.: Temporal sequence related protoform in liguistic summarization of time series. In: Proceedings of WConSC, San Francisco, CA, USA (2011)Google Scholar
  41. 41.
    Yager, R.: A new approach to the summarization of data. Inf. Sci. 28(1), 69–86 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Kacprzyk, J., Strykowski, P.: Linguistic summaries of sales data at a computer retailer: a case study. In: Proceedings of IFSA’99, pp. 29–33 (1999)Google Scholar
  43. 43.
    Kacprzyk, J., Yager, R.: Linguistic summaries of data using fuzzy logic. Int. J. Gen. Syst. 30(2), 133–154 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Petrovic, D., Xie, Y., Burnham, K.: Fuzzy decision support system for demand forecasting with a learning mechanism. Fuzzy Sets Syst. 157(12), 1713–1725 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Chen, D., Wang, J., Zou, F., Zhang, H., Hou, W.: Linguistic fuzzy model identification based on pso with different length of particles. Appl. Soft Comput. J. 12(11), 3390–3400 (2012)CrossRefGoogle Scholar
  46. 46.
    Štěpnička, M., Burda, M.: Computational intelligence in forecasting - the results of the time series forecasting competition. In: Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (2015)Google Scholar
  47. 47.
    Afanasieva, T., Yarushkina, N., Toneryan, M., Zavarzin, D., Sapunkov, A., Sibirev, I.: Time series forecasting using fuzzy techniques. In: José, M.R., Alonso, M., Bustince, H. (eds.) Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology, pp. 1068–1075 (2015)Google Scholar
  48. 48.
    Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Sets. Syst. 157, 993–1023 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Perfilieva, I., Yarushkina, N., Afanasieva, T., Romanov, A.: Time series analysis using soft computing methods. Int. J. Gen. Syst. 42(6), 687–705 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Novak, V., Štěpnička, M., Dvořák, A., Perfilieva, I., Pavliska, V., Vavříčková, L.: Analysis of seasonal time series using fuzzy approach. Int. J. Gen. Syst. 39, 305–328 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Novak, V., Pavliska, V., Štepnicka, M., Štepnicková, L.: Time series trend extraction and its linguistic evaluation using f-transform and fuzzy natural logic. Recent Developments and New Directions in Soft Computing, pp. 429–442 (2015)Google Scholar
  52. 52.
    Valenzuela, O., Rojas, I., Rojas, F., Pomares, H., Herrera, L., Guillen, A., Marquez, L., Pasadas, M.: Hybridization of intelligent techniques and arima models for time series prediction. Fuzzy Sets Syst. 159, 821–845 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Chen, S., Chang, Y.: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques. Inf. Sci. 180(24), 4772–4783 (2010)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Sharma, S., Chouhan, M.: A review: fuzzy time series model for forecasting. Int. J. Adv. Sci. Technol. (IJAST) 2, 32–35 (2014)Google Scholar
  55. 55.
    Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and arima models for time series forecasting. Appl. Soft Comput. J. 11(2), 2664–2675 (2011)CrossRefGoogle Scholar
  56. 56.
    Jain, A., Kumar, A.: Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. J. 7(2), 585–592 (2007)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Tewari, A., Macdonald, M.: Knowledge-based parameter identification of tsk fuzzy models. Appl. Soft Comput. J. 10(2), 481–489 (2010)CrossRefGoogle Scholar
  58. 58.
    Yap, W., Karri, V.: Comparative analysis of artificial neural networks and dynamic models as virtual sensors. Appl. Soft Comput. J. 13(1), 181–188 (2013)CrossRefGoogle Scholar
  59. 59.
    Toro, C., Gómez, M., Gálvez, J., Fdez-Riverola, F.: A hybrid artificial intelligence model for river flow forecasting. Appl. Soft Comput. J. 13(8), 3449–3458 (2013)CrossRefGoogle Scholar
  60. 60.
    Ruan, J., Wang, X., Shi, Y.: Developing fast predictors for large-scale time series using fuzzy granular support vector machines. Appl. Soft Comput. J. 13(9), 3981–4000 (2013)CrossRefGoogle Scholar
  61. 61.
    Höppner, F., Klawonn, F.: Finding informative rules in interval sequences. Intell. Data Anal. 6(3), 237–256 (2002)zbMATHGoogle Scholar
  62. 62.
    Das, G., Lin, K., Mannila, H., Renganathan, G., Smyth, P.: Rule discovery from time series. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, pp. 16–22 (2008)Google Scholar
  63. 63.
    Froelich, W., Papageorgiou, E., Samarinas, M., Skriapas, K.: Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer. Appl. Soft Comput. J. 1, 3810–3817 (2012)Google Scholar
  64. 64.
    Yang, Y., Sun, T., Huo, C., Yu, Y., Liu, C., Tsai, C.: A novel self-constructing radial basis function neural-fuzzy system. Appl. Soft Comput. 13(5), 2390–2404 (2013)CrossRefGoogle Scholar
  65. 65.
    Mahmoud, S., Lotfi, A., Langensiepen, C.: Behavioural pattern identification and prediction in intelligent environments. Appl. Soft Comput. J. 13(4), 1813–1822 (2013)CrossRefGoogle Scholar
  66. 66.
    Bautu, E., Barbulescu, A.: Forecasting meteorological time series using soft computing methods: an empirical study. Appl. Math. Inf. Sci. 7(4), 1297–1306 (2013)CrossRefGoogle Scholar
  67. 67.
    Kacprzyk, J., Wilbik, A., Partyka, A., Ziółkowski, A.: Trend Analysis System. Systems Research Institute, Polish Academy of Sciences, Warsaw (2011)Google Scholar
  68. 68.
    Makridakis, S., Hibon, M.: The m3-competition: results, conclusions and implications. Int. J. Forecast. pp. 451–476 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Systems Research Institute, Polish Academy of SciencesWarsawPoland

Personalised recommendations